Cover Image

Characterisation of a new protocol for mortar dating: 14C evidences

Fabio Marzaioli, Carmine Lubritto, Sara Nonni, Isabella Passariello, Manuela Capano, Luca Ottaviano, Filippo Terrasi
  • Fabio Marzaioli
    Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, Caserta, Italy | fabio.marzaioli@unina2.it
  • Carmine Lubritto
    Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
  • Sara Nonni
    Dipartimento di Scienze della Terra, Università La Sapienza, Roma, Italy
  • Isabella Passariello
    INNOVA Centre for Isotopic Research on Cultural and Environmental heritage - CIRCE, Seconda Università degli Studi di Napoli, Caserta, Italy
  • Manuela Capano
    Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
  • Luca Ottaviano
    Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
  • Filippo Terrasi
    Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, Caserta, Italy

Abstract

Mortars represent a class of material basically constituted by a mixture of different phases (i.e. binder, aggregates, water) and widespread used for constructive uses and artworks. Current scientific literature regarding the possibility of mortar radiocarbon dating reports different and still contradictory results. Most of the observed inaccuracy of the dating method often derives from the presence of carbonaceous residuals of limestone origins drastically increasing the mortar age estimation contributing with significant aliquots of dead carbon. Most of the existing methodologies aim to isolate binder from other materials, preserving a trace of the 14C signature of the atmosphere absorbed during mortar setting. In this work a series of measurements (i.e. %C and 14C) of different matrices involved in the mortar production process simulated in a simplified version in the laboratory environment will be shown. More in detail the isotopic signature of the CO2 present in the laboratory air during mortar setting is compared with the signal extracted from the synthesised mortar by means of a separation protocol of the binder. Our analyses are performed with the aim to evaluate this procedure of dead C suppression efficiency for accurate mortar radiocarbon dating.

Keywords

isotope methodologies, radiocarbon dating, laboratory accuracy evaluation, cultural heritage absolute chronology

Full Text:

PDF
Submitted: 2013-12-24 11:36:17
Published: 2014-02-12 17:23:11
Search for citations in Google Scholar
Related articles: Google Scholar
Abstract views:
684

Views:
PDF
258

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2014 Fabio Marzaioli, Carmine Lubritto, Sara Nonni, Isabella Passariello, Manuela Capano, Luca Ottaviano, Filippo Terrasi
 
© PAGEPress 2008-2017     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185