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Abstract 

Douglas Theobald recently developed an
interesting test putatively capable of quantify-
ing the evidence for a Universal Common
Ancestry uniting the three domains of life
(Eukarya, Archaea and Bacteria) against
hypotheses of Independent Origins for some of
these domains. We review here his model, in
particular in relation to the treatment of
Horizontal Gene Transfer and to the quality of
sequence alignment.

Introduction

Recently Douglas Theobald developed an
interesting test putatively capable of quantify-
ing the evidence for a Universal Common
Ancestry (UCA) uniting the three domains of
life (Eukarya, Archaea and Bacteria) against
hypotheses of Independent Origins (IO) for
some of these domains.1 He imagined the UCA
hypothesis as modeled by a single phylogeny
connecting all three domains, while each com-
peting IO hypothesis being represented by a
partitioning of domains into independent phy-
logenetic trees. Thus for instance if we want to
describe the hypothesis that Eukarya share a
common ancestor with Bacteria but neither
shares an ancestor with Archaea, we can think
of one single phylogeny connecting all Eukarya
and Bacteria, and another non-overlapping
phylogeny describing the evolution only of the
Archaea (Figure 1). This model is represented
by A+BE to highlight the fact that Bacteria and
Eukarya are together while Archaea is alone.
Here, each extant species will coalesce into the
past until the root, called the Most Recent
Common Ancestor (MRCA) and which repre-
sents an individual from a population of inter-
breeding individuals. However, we will see that
the hypotheses generalize to the ancestral pop-
ulations, not just the individuals. By popula-
tion here we mean groups of individuals with
shared genetic material. The question being
posed is actually if the ancestral/primeval pop-
ulations that gave rise to the diversity of life
we see today did or did not exchange genetic
material between themselves - if there were
barriers to the exchange then the apparent

homology we observe is in fact product of
ancestral convergence.

DNA or protein sequences can be used to
gather data sets that are naturally amenable to
test these ideas. With these type of data we can
build biologically reasonable statistical models
based on the phylogenetic likelihood, the prob-
ability of the data (the sequence alignment)
given the hypothesis (the tree and the model
of substitution). Importantly, all models used
in the study are oblivious to the root position,
i.e., the likelihood of the competing hypotheses
are identical for any rooting and in practice we
can assume unrooted trees.2 Theobald devised
in this way a model selection approach based
on the Likelihood Ratio Test (LRT), Akaike
Information Criterion (AIC) and Bayes Factors
(BF)3,4 to compare the UCA and IO hypotheses.
He assumed that the ancestry of organisms
can be properly represented by a set of protein-
coding genes, and without modeling conver-
gence explicitly. After analyzing 23 alignments
of universally conserved proteins spanning the
three domains of life (4 species for each
domain), he concluded that the UCA hypothe-
sis was strongly favored over any IO hypothe-
sis, either after concatenating all alignments
into one supermatrix or studying each align-
ment separately.1 Since we don’t need to know
the location of the phylogenetic roots (repre-
senting the MRCAs), the test assumes that
each gene has an MRCA potentially distinct
from other genes - representing different indi-
viduals from the population.

Indeed, this test is not a validation of the
evolutionary theory but a comparison between
evolutionary models well-defined within the
theory - the evidence for common ancestry in
general includes astounding congruence
between phylogenetic, morphological, paleon-
tological and phylogeographic studies,5 the
existence of a nearly universal genetic code6

and the ubiquitous presence of many ortholo-
gous genes.7 His test also cannot solve how
many times life originated on Earth, since it
already assumes one or several basal popula-
tions and even then it only looks at the suc-
cessful ones (the ones still represented today).
This way it is possible that several populations
of independent origins were present in the
past, and nonetheless all present life coalesces
to a single one of these populations - in which
case all life shares a UCA since all information
from IO was lost. His test is restricted to gene
alignments, and does not address the evolution
of the genetic code, genomic content or mor-
phological characters, for instance. In the fol-
lowing sections we will describe the phyloge-
netic theory behind his test together with his
implementation, some published criticis and
some further caveats.

Phylogenetic Models

By assuming that a character - e.g. a
nucleotide, a codon or an amino acid – evolves
according to a continuous-time Markov chain
along a phylogenetic tree, we can promptly cal-
culate the probability of a set of homologous
characters given the tree with branch lengths
(in any arbitrary unit) and other parameters of
the substitution process (the Markov chain).8
Many phylogenetic reconstruction methods
will thus assume that each column of an align-
ment (a site) represents a distinct homologous
character while each row represents a single
taxon, and together with other assumptions
will try to estimate the phylogenetic tree that
maximizes the likelihood or the posterior dis-
tribution of trees that are compatible with the
alignment and prior distributions.9 These
assumptions might for instance impose equal,
proportional or independent substitution
processes for sites and/or branches, and usual-
ly are a simplification of the underlying
unknown processes.10 We must remember that
even though each site evolves independently
from each other, all share the same tree topol-
ogy11 and parameters like the alpha shape of
the Gamma distribution for among-site rate
variation12 or the stationary state frequencies.
There are however exceptions (like mixture
and recombination models), that we won't dis-
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cuss here. Programs implementing these
methods usually allow the user to fix the
parameters at a single value or estimate them
otherwise, as long as the model is fully
defined. A fully defined model, as is relevant
for our discussion,13,14 is one where we decide:
i) if the instantaneous substitution matrix is
fixed or variable; ii) if it’s fixed, which one we
should use (for protein sequence there are
several alternatives estimated from large data
sets); iii) if the equilibrium frequencies
should be estimated by Maximum Likelihood
(ML) or observed proportions, or fixed at their
model-derived values; iv) if all sites evolve at
same rate or at distinct rates described by a
discretized Gamma distribution (whose
parameter should be estimated); and v) if we
assume that a proportion of sites is invariable
(and then estimate this proportion).

Can’t we have other, more parameter-rich
models? We can indeed, like for instance a
general time-reversible substitution matrix,
where all instantaneous transition probabili-
ties are estimated from the data. Or assume
that each site has its own substitution rate, or
substitution matrix. The problem is that as we
increase the number of parameters to be esti-
mated from the data we increase the uncer-
tainty about the estimates in a way that might
not be justified by the increase in the likeli-
hood. And some models might lead to inconsis-
tent estimates - like the example of one rate
per site - therefore needing further con-
straints. We usually assume that the existing
models are a good compromise, and if we want
to decide objectively among the available
options we must subject our data to a model
selection approach.3,4 Model selection
approaches aim at finding the best model that
explains the data, where best is some optimum
between bias and variance, or between parsi-
mony and realism.3 The simplest case is when
the models are nested (one is a particular case
of the other), in which case we can approxi-
mate the difference between the log likeli-
hoods by a chi-squared distribution - the stan-
dard LRT method. But there are many other
methods like the AIC, the Bayesian nformation
criterion or the BF, that don’t need the models
to be nested. The AIC value of a model is sim-
ply twice the ML value under this model, sub-
stracted by twice the number of variables. The
BIC is similar but takes into account also sam-
ple size, something never defined in molecular
phylogenetics but usually assumed to be the
number of sites in the alignment. If we do
Bayesian analyses under each competing
model, the BF can be calculated as the ratio
between the marginal likelihoods for each
model. These marginal likelihoods are usually
calculated by the harmonic mean over all
MCMC samples, despite more stable algo-
rithms exist.15 We note that since model selec-
tion procedures try to find the model that best

explains a set of observations, it is essential
that the same data set be used when compar-
ing different hypotheses. Indeed, when com-
paring the likelihood, L ~ P(D|Hi), of the dif-
ferent hypotheses (H1, H2, … corresponding
to hypothesis 1, hypothesis 2, ...), the data D
should be fixed.16 Importantly, here the data
observations are the columns of the alignment,
as the alignment is given.

Theobald’s implementation

Having succeeded in writing the UCA and IO
hypotheses in phylogenetic terms, Theobald
could then extend existing model selection
methodologies to compare one phylogeny
(UCA) against more than one (IO).1 Under the
UCA hypothesis it suffices to find the model
and its corresponding parameters that best fit
the alignment, while for each IO hypothesis he
splitted the alignment into taxa belonging to
each independent group and then found the
best model for each group independently. This
way it could be found that e.g. under the
hypothesis AB+E (that is, Archaea and
Bacteria having ancestry independent from
Eukarya) the model that best explains AB is
not the same as the optimal one for Eukarya.
Under IO, one can simply multiply the likeli-
hoods of each ML model since they describe
independent events.

The difference in the number of parameters
among hypotheses due solely to the number of
trees - that is, neglecting other model parame-
ters like  presence/absence of rate heterogene-
ity, which nonetheless must be taken into
account when comparing UCA and IO models -
is 3 per IO assumption, since every time we
split a tree in 2 we lose 3 branches with their
corresponding lengths. It can be shown that
both hypotheses can be accommodated by the
same general model, where each IO hypothesis
is equivalent to an arbitrarily long branch (it is
a consequence of the property that ergodic
chains converge to their equilibrium distribu-
tions). In frequentist terms, the IO would be
the null hypothesis - of a branch length fixed at
infinity - nested in the alternative, more com-
plex UCA hypothesis. This general model
could, in principle, incorporate a variable sub-
stitution process along the tree such that each
branch has not only a distinct length but also a
potentially different substitution matrix, pro-
portion of invariant sites, equilibrium frequen-
cies and rate heterogeneity process. This way
we could ideally isolate the effect of one
branch length while keeping all other parame-
ters at the same values under both hypotheses,
leading to the previously described difference
of 3 in the number of parameters. But as we
mentioned above it is hard to work with such
overparameterized models, and most programs

simply assume that the substitution matrix is
constant along the phylogeny. Therefore in
practice the substitution model can vary
between independent trees while it is assumed
constant under UCA, because of a limitation of
available software to consider only homoge-
neous models. That is why the model repre-
senting the IO hypothesis has more parame-
ters that the model representing UCA even
though IO is a particular case of UCA in gener-
al: the software can infer the best, distinct
models for each domain under IO, but cannot
use all these models (i.e., heterogeneous mod-
els changing in different parts of the tree)
under the single phylogeny of the UCA. 

This may be a problem whenever the test
favors the IO hypothesis, since we cannot
know if the improvement of IO over the UCA
model stands from the independent trees
assumption (with fewer branches) or from bet-
ter substitution models for each tree. The for-
mer indeed provides evidence for IO, but the
later suggests that the true evolutionary
process cannot be assumed to be homoge-
neous along the tree. As we will see in the
analyses presented by Theobald the IO
hypotheses were always rejected, therefore he
didn’t need to consider this issue. A provision-
al solution would be to constrain all sequences
under each IO hypothesis to follow the same
evolutionary model - estimated e.g. from the
UCA model. A better solution would be to
employ a program that allows heterogeneous
models along the phylogeny, ideally under a
Bayesian framework so that the marginal dis-
tribution of the branch lengths of interest can
be estimated.

Theobald used the crude LRT based on the
ML values from Prottest,17 the AIC as given by
the same program, and also the Bayes factor
between the marginal likelihoods given by
MrBayes13 - which as before can be simply
multiplied under the IO hypothesis. Under
MrBayes he chose a broad, fixed parametriza-
tion and for the substitution matrices he used
a mixture model that samples from all the
matrices. If we are then interested in inferring
the best ones we can simply look at their pos-
terior distribution, but here to calculate the
marginal likelihood they are integrated out.
His data set comprised 23 proteins and his first
analysis (called class I models) assumed that
all proteins shared the same phylogenetic tree
and same parameters (under a given hypothe-
sis). In other words he concatenated all pro-
teins into a single alignment with 6591 sites,
and then compared the UCA model with mod-
els where one or all domains of life were sepa-
rated. Such scenarios are represented at the
left panel of Figure 1. Under all model selection
criteria the UCA hypothesis was very strongly
favored, and in general there was strong agree-
ment between them.
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To take into account the possibility that
some gene suffered horizontal gene transfer
(HGT), that is, genetic material was laterally
exchanged between unrelated organisms in
the past,18 Theobald devised the class II mod-
els. Under these models each one of the 23
genes can have a phylogenetic history inde-
pendent from the others, with its own model,
tree and parameters. This stands from the phy-
logenetic effect of HGT: possible existence of
incongruent phylogenies between genes, with
some HGTs being undetectable. As before, the
test is between models where all taxa are con-
nected against models where the taxa are par-
titioned into independent clusters (Figure 1).
Because each gene will lead to an independent
unrooted phylogeny, class II models can effec-
tively accommodate distinct common ances-
tors for each gene - the exact position of the
root is unknown for each tree - that nonethe-
less belong to a single population. Under class
II models, again, the UCA hypothesis was
strongly favored against any IO scenario, using
any model selection criterion. Furthermore,
the UCA hypothesis using the class II model
was preferred over its class I equivalent. This
means that indeed the evolutionary history of
the analyzed data set could be a reticulate one,
and one should not force all genes to follow the
same phylogenetic tree. There have been so far
two relevant criticisms to Theobald’s work, and
both are somehow related to the fact that the
homology of each site is assumed for phyloge-
netic inference methods and therefore might
not be easily refuted. The first criticism was
based on the need to explicitly model conver-
gent and parallel evolution, such that even tak-
ing those into account to explain sequence
similarity, UCA would still be preferred over
IO.19 To emphasize their point the authors
showed that UCA was preferred even for a data
set of unaligned DNA sequences known to not
be homologous. Theobald replied that UCA was
properly rejected once codon or amino acid
models were used, and that his data set with
over 55% average sequence identity could not
be explained by convergent evolution alone.20

The second criticism came from a simula-
tion study where each alignment column was
simulated by sampling amino acids from a dis-
crete distribution such that columns did not
follow any phylogenetic tree structure, and
each column was generated by a distinct distri-
bution.21 Still, the UCA hypothesis was favored
for all 100 such simulations due to the similar-
ity between sequences alone, according to the
authors. Theobald contested that this model is
equivalent to a star tree, which indeed repre-
sents common ancestry, and showed that a
modification of his test to include such a
model would in fact distinguish his data set
from these simulations.22 And he also showed
that his test would favor IO for an engineered
data set composed of a phylogenetic mixture.

Unfortunately he used the observed significant
pairwise similarity between the sequences to
conclude that the sequences are highly similar,
while the average identity was only 0.33 for
every column of the resulting multiple
sequence alignment.

Discussion

While indeed we believe (in a Bayesian
sense) that the UCA hypothesis is correct, there
are, however, two caveats with Theobald’s
analysis that are worth mentioning. The first

Review

Figure 1. Representation of the Universal Common Ancestry (UCA) and Independent
Origins (IO) models, and how to compare them based on alignments. The left panel rep-
resents the class I models where all genes are concatenated into one large alignment. On
the right we have the class II models where each gene is free to evolve under a distinct phy-
logenetic history. At the top we have the UCA hypothesis, that claims that all sequences
from each gene can be traced back to a common ancestor, while at the bottom we have one
example of the IO  hypothesis where Bacteria and Eukarya share a common ancestor,
which is not shared with Archaea. Other possible IO scenarios are not shown.

Figure 2. Effect of horizontal gene transfers (HGTs) on the observable gene phylogenies.
Here we show 4 examples where Eukarya and Bacteria do not share a common ancestor
with Archaea – each domain is represented by a color but individual species are not iden-
tified. In the left column we have the transfers represented by red arrows defining donor
and recipient, while in the right we have the resulting phylogenetic trees. The first sce-
nario (A) is one with no apparent HGT (no change in topology), while B) represents a
gene transfer from a Bacteria to an Eukarya, such that for this gene the eukaryotic species
will have an homolog resembling a bacterial one (such homologs are called xenologs actu-
ally).  C) shows a transfer from an archaean ancestor to a bacterial one, and D) describes
a transfer from Bacteria to Archaea. Notice that under scenario D the archaean version of
the gene is lost and all species share the bacterial one. For scenarios B, C and D we assume
that the recipients of the gene transfer lose their original copies, which are replaced by the
foreign ones.

Non
-co

mmerc
ial

 us
e o

nly



[Trends in Evolutionary Biology 2012; 4:e5] [page 29]

relates to the theoretical model and its treat-
ment of HGT within Class II hypotheses. The
Class II models, despite being an elegant solu-
tion to within-domain lateral transfers, do not
consider transfers between domains of inde-
pendent origins. This general scenario would be
equivalent to an IO model where any division of
the taxa into independent phylogenies is possi-
ble (while the UCA model does not need correc-
tion). A formal test that fully takes into account
HGT should allow for one gene favoring AE+B,
another favoring AB+E, and even another favor-
ing a single origin ABE - if this particular gene
is the product of an ancestral sweeping HGT.
This reminds us that a really informative test of
the UCA hypothesis that accounts for HGT
should be actually one about the existence or
not of at least one gene for which it can be
rejected in favor of an IO. 

This is represented in Figure 2, where we
have several possible HGT scenarios under the
EB+A hypothesis, but only scenarios represent-
ed by panels A and B maintain the topologies EB
and A - and therefore would be detected by
Theobald’s test under EB+A hypothesis. The
HGT scenario from panel C  generates topolo-
gies that resemble an AB+E model, since the
ancestral bacterial gene was replaced by one of
archaean origin. In panel D the archaean gene
from independent origin was replaced by the
bacterial version, such that the signal from
independent ancestry is lost. For all effects,
genes like these where their ancestral version
was completely replaced by a foreign one will
support a UCA nonetheless. It then becomes
essential to consider as many genes as possible,
since even if the organisms conform to IO,
some genes may have lost this information and
support UCA. 

Our second caveat is about the practical
implementation of the test, that unintentionally
neglects the contribution of alignment proper-
ties.23 Theobald later clarified that his test can
only be applied without corrections for highly
similar sequences, mentioning that the align-
ment optimization can result in bias toward
UCA for data sets with lower similarity or align-
ment uncertainty.22 To have an idea of how the
alignment properties are related to the evolu-
tionary scenarios, we simulated 8-sequence
data sets under the UCA hypothesis and under
an IO scenario with two independent quartets.
We evolved these sequences under trees and
parameters  that resembled the original BE data
set, but with the total sum of branch lengths
randomly assigned between 0.01 and 10. We
then aligned the resulting sequences using
ProbCons,24 a program that can also provide a
measure of alignment quality - the expected
percentage of correct pairwise matches per col-
umn. Furthermore we calculated the average
pairwise identity before and after optimizing
the alignment. The alignment optimization step
(the process of aligning the sequences) is a

standard procedure in phylogenetics since the
primary data are sequences likely to be homolo-
gous as a whole but still with homology status
unknown for each site.25 This optimization
aims at finding the scenario of indels (inser-
tions and deletions) such that each column
could be optimally assigned as an homologous
character, generally in practice trying to maxi-
mize the columns’ similarity while not increas-
ing too much the length of the sequences.26

These results are summarized in Figure 3,
where we can see that alignments of sequences
we simulated under UCA have very different
properties from those simulated under IO - for
data simulated under a UCA the optimized
alignment was essentially the same as the
unaligned. The quality values given by

ProbCons, for instance, are a good predictor of
common ancestry since even large trees under
UCA present an average expected accuracy
much higher than very short trees under an IO
model. We can also see how the alignment opti-
mization improved the average pairwise identi-
ty (by definition, the average identity per site)
for the sequences we simulated under IO, val-
ues which are nonetheless much lower than
those under UCA with similar divergence levels.

These simulations were inspired by the
Bacteria and Eukarya data set, and therefore we
wanted to compare the real data set with our
simulations. Douglas Theobald kindly provided
to us the complete data set, and in Figure 4 we
show some column-wise statistics for the
observed BE data set compared to simulations
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Figure 3. Alignment properties for data sets simulated under Universal Common Ancestry
(UCA) and Independent Origins (IO). The left panel shows the relation between quality
values from ProbCons (averaged over all sites) and tree length used in simulation. The
middle panel shows the average pairwise identity under UCA and IO as a function of tree
length. For IO simulations we have the identity values before and after optimizing the
alignment, and the gray horizontal line at 0.47 represents the observed value for the BE
data set. The panel at the right show the histogram of optimal alignment lengths divided
by the unaligned values, for simulations under UCA and IO. Here the distribution is
pooled over several tree lengths. For all panels we have the UCA simulations in black
(after alignment optimization, which is essentially the same as before optimization), the
unaligned IO data sets in red and after alignment optimization in blue.

Figure 4. Distribution of pairwise identities and percentage of correct matches (as given
by ProbCons) per alignment column for simulated and real data sets. On the left we have
the distribution of column-wise identities over all simulations - that is, under short
Independent Origins (IO) trees and under large Universal Common Ancestry (UCA) sce-
narios. The gray background indicates the equivalent frequencies for Theobald’s BE data
set. The middle panel shows the same information as the left one, but here all trees were
simulated under branch lengths compatible to those for Theobald’s BE data set. The right
panel is the histogram of quality values per column as given by ProbCons for all simula-
tions, together with the values for the observed BE data set. The colors are the same as
Figure 3 (blue for aligned IO and black for UCA), with gray columns indicating
Theobald’s BE data set.
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under UCA or IO hypotheses. This data set has
average pairwise identity of 0.47 (shown as
well in Figure 3 – the gray horizontal line – for
comparison), and the ML tree under the best
model had a total tree length of 3.3, which was
used in simulations as well. To be more con-
servative, under UCA all simulated trees had
total length larger than 6, while under the IO
simulation scenario the sum of branch lengths
from both trees did not exceed 3. It is worth
noticing that our simulation scenarios under
the IO hypothesis are similar to the doppel-
gänger sequences described in Pollock DD et
al.:27 these sequences were simulated under a
tree and parameters of interest and then ana-
lyzed together with the original sequences
from which the tree was inferred. Their objec-
tive was to increase the signal for rate hetero-
geneity without providing information about
internal branches. They also recognized that
these resulting data sets are unlikely to pro-
vide alignable sequences in nature.27

Notice that we did not conduct the model
selection test proposed by Theobald and
nonetheless we already have strong evidence
that the BE data set resembles UCA much
more than IO: at overall and column-wise
sequence identities, distribution of correct
pairwise matches per column, alignment size
after  optimization, and probably at many other
alignment quality estimates. As a side note,
this kind of procedure is formally applied on
approximate Bayesian computation (ABC)
analyses, where we cannot calculate the likeli-
hood of arbitrary models and instead look at
the parameter sets that best approximate the
observed data.28

The simulations presented here constitute
just a few idealized situations, and we recog-
nize that we didn’t explore here other align-
ment statistics that might serve as relevant
indicators (e.g. congruence of alignment opti-
mization methods and other measures of
robustness of the alignment, as well as homol-
ogy detection algorithms). But the few statis-
tics we analyzed here can already distinguish
UCA from IO data sets, even before doing the
formal test proposed by Theobald. It is not only
a mistake but a misdirection to neglect the cor-
relation between these alignment measures
and the ancestrality of the sequences. In this
sense if we follow Theobald’s approach of
restricting the analysis to robust alignments,
the test might be giving us the right answer
(UCA hypothesis) for the wrong reason: we
would have selected beforehand sequences
that would maximize our chances of favoring
the UCA hypothesis. 

We must also mention an even larger prob-
lem with such data selection: sequences simu-
lated under IO are unlikely to be detected by
BLAST as potential homologs, given their low
similarity scores. In our simulations above, all
sequences simulated under the same phyloge-

ny displayed a significant similarity according
to the e-value from BLAST, while no significant
hits were found between sequences simulated
under distinct trees (results not shown). This
suggests that a data set produced under the IO
hypothesis not only is unlikely to fit the
requirements needed by Theobald’s test, but it
wouldn’t even be considered to start with. And
even sequences with significant similarity
based on pairwise comparisons routinely pro-
duce uncertain alignments, with overall low
sequence identities, as shown for instance by
the BaliBASE data sets.29 We must not forget
that no matter how imperfect and biased a
database homology search might be, it is still
an inference that we cannot ignore. Far from
replacing it, the test developed by Theobald
actually relies on a set of candidate homologs.
The puzzle then is to develop a model that can
systematically produce sequences under the IO
hypothesis that also conforms to the alignment
properties needed for the test to be valid with-
out corrections, according to Theobald.22

Conclusions

Although we agree that high similarity does
not imply homology, they are certainly not
independent. A formal test capable of distin-
guishing common ancestry from independent
origins should not be valid only on data sets
where we already have strong evidence favor-
ing one of the outcomes - the data selection
must be considered as part of the test.30

Theoretically such a test should consider arbi-
trary sequences for which we do not have prior
indication of homology - that is, it should not
rely on blast-like database searches and should
rather supplant it. 

And since with the presence of HGT we must
consider all sequences potentially present in
the ancestral pool, we cannot conclude for the
UCA hypothesis based only on the most partic-
ularly similar sequences. The signal for IO will
most likely be preserved only in the more
divergent genes, even if we find most other
genes supporting UCA - in a manner similar to
an HGT sweep.31 In a nutshell, a test that is not
biased towards UCA should be capable of han-
dling sequences with low similarity, from the
database search to the alignment optimiza-
tion. Sequences with low similarity may not
only contain the (lack of) signal characteristic
of IO, but are also informative about deep
branches and will be essential in estimating
realistic evolutionary rates and/or times.32

This test should also contemplate the inclusion
of paralogs: what we classify nowadays as dif-
ferent genes due to limitations of homology
detection algorithms might be in fact product
of an ancient duplication and therefore sup-
port a UCA of these gene families. 

Notice that this criticism refers mostly to
the implementation of the test and not to the
models, that we do believe are appropriate phy-
logenetic representations of UCA and IO
hypotheses, as developed in Sober E. et al.33

Here we always assume that the UCA hypothe-
sis can be resolved by looking at the set of gene
phylogenies, which may be insufficient to
describe the organismal evolution. There are
further complications when we consider the
limitations of the tree of genes when compared
to the tree of cells,34 to the evolution of the
genomes taking into account noncoding
regions, or to the evolution of the genetic code.
For example, the history of the cells may point
to a common ancestry while some gene may
have appeared more than once. Theobald did
not explore all possible scenarios, neither we
tried to do it here. But Theobald was clear,
from the beginning, that his test was not the
last word on the subject, but a first step in try-
ing to solve it.
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