Towards the rapeutic stimulations of $\gamma\delta\, T$ cells

[haematologica reports] 2006;2(3):29-31

Malkovsky M¹ Wallace M¹ McNeel DG¹ Liu G¹ Mejia G¹ Kaikobad M¹ Waterman P¹ Samaniego E¹ Bonneville M² Fournie JJ³ Sicard H⁴ Poccia F⁵

¹University of Wisconsin Medical School, Madison, Wl, USA; ²INSERM U601, Institut de Biologie, Nantes, France; ³INSERM U395, Toulouse, France; ⁴Innate Pharma, Marseille, France; ⁵Laboratory of Cellular Immunology, National Institute for Infectious Diseases "L.Spallanzani", Rome, Italy

ost vaccine strategies are designed to elicit adaptive immune responses to a variety of microbial or tumor-associated antigens. These immune responses are predominantly mediated by $\alpha\beta$ T cells, B cells and antibodies. Nevertheless, approximately 1-5% of human peripheral blood lymphocytes possess the surface $\gamma\delta$ T-cell receptor, predominantly expressing the Vy9V δ 2 variable segments. Vy9V δ 2 T lymphocytes recognize nonpeptidic antigens (NpAgs) generated by the DOXP (many eubacteria, algae, plants, apicomplexa) and mevalonate (eukaryotes, archaebacteria and certain eubacteria) pathways of isoprenoid synthesis. NpAgs are molecules structurally distinct from the typical peptidic antigens that interact with $\alpha\beta$ T-cell receptors. Also, the recognition of NpAgs by V γ 9V δ 2 T cells does not require *classical* antigen processing and MHC class I or II presentation. It is believed that this pattern of recognition allows for a rapid primary immune response to antigen challenge, particularly by infectious agents.1,2

In addition to NpAgs, it has also been demonstrated that certain nitrogen-containing bisphosphonates (N-BPs) such as pamidronate disodium or zoledronic acid are potent stimulators of V γ 9V δ 2 T cells.^{3,4} Originally, Kunzmann and colleagues demonstrated that the anti-tumor effect of pamidronate on myeloma cells was correlated with its ability to elicit $\gamma \delta T$ cells in vitro using bone marrow from patients with multiple myeloma.⁵ The investigators also reported that Vy9V δ 2 T cells could be detected in the bone marrow of patients with multiple myeloma, and that cytoreduction of these cells permitted the outgrowth of malignant myeloma cells.⁵ In 1995, Choudhary et al.6 showed unequivocally that $\gamma\delta$ T cells infiltrate renal cell carcinomas (RCCs) and the infiltrating $\gamma\delta$ T cells are cytotoxic for autologous tumors. Recently, these studies were confirmed and extended by Viey et al.⁷ For studying $\gamma \delta T$ cells in cancer patients, we have developed sensitive, non-radioactive assays for

assessing the capacity of V γ 9V δ 2 T cells to kill cancer cells *in vitro* (Figures 1 and 2). These assays are based on measuring a) the retention of a calcein fluorophore by viable cells (*see below*), b) the assessment of caspase activities (data not shown) and c) the release of nonradioactive lanthanides, specifically ⁶²Sm, ⁶³Eu and ⁶⁵Tb by lanthanide-labeled dead cells (*data not shown*).

A common side effect with administration of zoledronic acid, and frequently with other bisphosphonate drugs, is the development of fever, myalgias, nausea, and other flu-like symptoms, 24-48 hours later. This is most common with the first dose. and is less frequently observed with subsequent doses. This has been attributed to a burst of inflammatory cytokines, in particular TNF- α and IL-6, detectable in the serum of treated patients.^{8,9} In vitro, PBM-Cs isolated from normal donors, secrete large amounts of IFN γ and TNF- α , when incubated with increasing doses of either pamidronate or zoledronic acid. These changes are associated with $\gamma\delta$ T- cell activation, as measured by down-regulation of the $\gamma\delta$ TCR. In addition, lower concentrations of either pamidronate or zoledronic acid, in combination with IL-2 lead to expansion of $\gamma\delta$ T cells; higher concentrations lead to decreased expansion and increased apoptosis, as measured by Annexin V surface staining. This increase in $\gamma\delta$ T cell death is likely due to over-stimulation, or activation-induced cell death, as evidenced by the decrease in cell TCR frequency. In addition, part of this effect may be mediated by the induction of apoptosis of monocytes as antigen-presenting cells as a direct effect of the aminobisphosphonates on this population.¹² These findings, together with the clinical observation that cytokine-mediated side effects are ameliorated with subsequent dosing, suggest that higher doses of the aminobisphosphonates may, in fact, lead to over- activation of $\gamma\delta$ T cells *in vivo*. It has been reported¹³ that the peak serum concentration with the typical dose of 4 mg intra-

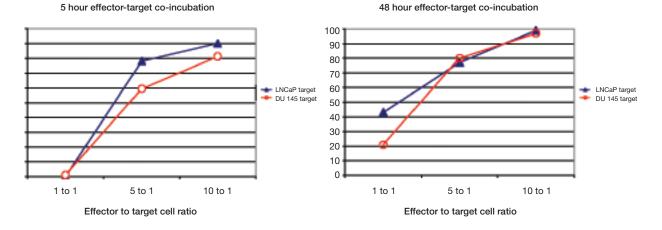
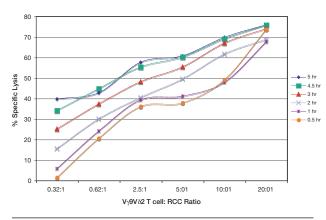
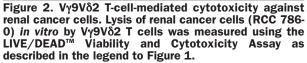




Figure 1. Destruction of prostate cancer cells by the $V\gamma9/V\delta2$ T-cell line A1/C2 *in vitro*. Prostate cancer cells lines (LNCaP or DU145) were plated in complete RPMI medium and allowed to adhere to tissue culture wells overnight in a CO₂ incubator (37°C). The next day, nonadherent $V\gamma9V\delta2$ T-cell effectors or media were added. In this experiment, the plates were incubated for 5 or 48 hours. Effector cells or media were carefully removed and plates were gently washed with PBS. Viability was determined using the LIVE/DEADTM Viability/Cytotoxicity Assay for Animal Cells using the SPECTRAmax GEMINI EM Fluorescence Microplate Reader (Molecular Devices, Sunnyvale, CA). In brief, 5 μ M Calcein AM (a nonfluorescent, esterase substrate that is cleaved by cytoplasmic esterases upon diffusion into live cells, releases a calcein fluorophore that is retained in viable cells) was added to all wells including the blanks. After a 4-h incubation (37°C), relative fluorescence units (RFU) that are directly proportional to the number of live tumor cells were read from the bottom of plates using the well scan feature at the excitation wave length of 488 nm (emission – 525 nm; cut off filter – 515 nm). The percent specific cytotoxicity was calculated by [(RFU for tumor cells alone – RFU for tumor cells incubated with effectors)/(RFU for tumor cells alone – media RFU)] x 100. The AI/C2 Vy9V\delta2 T-cell line was derived from normal human PBMCs using the method described by Fisch *et al.*^{10,11}

venous dose, administered over 15 minutes, is 264 ± 86 ng/mL (~1 μ M), a dose at which we have observed increased apoptosis *in vitro*. An *in vivo* dose titration study is necessary to identify an appropriate dose to activate and expand $\gamma\delta$ T cells *in vivo* without resulting in overactivation and apoptosis of these cells.

Recently, we have shown that intravenous administration of N-BPs or pyrophosphomonoester drugs combined with low doses of IL-2 induces a large pool of CD27⁺ and CD27⁻ effector/memory V γ 9V δ 2 T cells

in the peripheral blood.¹⁴ Moreover, we have observed anecdotal cases of patients with hormone-refractory prostate cancer, who have been treated with pamidronate or zoledronic acid for palliative purposes and who have had evidence of a PSA decline and/or stabilization in the absence of other active therapies.¹⁵ Several clinical trials focused on $\gamma\delta$ T-cell activation *in vivo* in patients with various cancers are currently in progress. The findings from these trials, their future combinations with conventional therapies, and the wealth of information that has been learned particularly over the last decade are likely to further improve the armament of clinical oncologists as well as specialists in infectious diseases.¹⁶⁻¹⁸

References

- Poccia F, Agrati C, Ippolito G, Colizzi V, Malkovsky M. Natural Tcell immunity to intracellular pathogens and nonpeptidic immunoregulatory drugs. Curr Mol Med 2001;1:137–251.
- Poccia F, Gougeon ML, Ágrati C, Montesano C, Martini F, Pauza CD, et al. Innate T-cell immunity in HIV infection: the role of Vγ9Vδ2 T lymphocytes. Curr Mol Med 2002;2:769–81.
- Das H, Wang L, Kamath A, Bukowski JF. Vγ2Vδ2 T-cell receptormediated recognition of aminobisphosphonates. Blood 2001;98: 1616-8.
- Dieli F, Gebbia N, Poccia F et al. Induction of γδ T-lymphocyte effector functions by bisphosphonate zolendronic acid in cancer patients in vivo. Blood 2003;102:2310-1.
- 5. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of $\gamma\delta$ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000;96: 384–92.

Cervo Preclinical Working Conference, October 6-8, 2005

- 6. Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F. Selective lysis of autologous tumor cells by recurrent $\gamma\delta$ tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 1995;154:3932-40.
- 7. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S. Phosphostim-activated $\gamma\delta$ T cells kill autologous metastatic renal cell carcinoma. J Immunol 2005;174:1338-47.
- 8. Dicuonzo G, Vincenzi B, Santini D, Avvisati G, Rocci L, Battistoni F, et al. Fever after zoledronic acid administration is due to increase in TNF- α and IL-6. J Interferon Cytokine Res 2003;23: 649-54.
- Thiebaud D, Sauty A, Burckhardt P, Leuenberger P, Sitzler L, Green JR, et al. An *in vitro* and *in vivo* study of cytokines in the acutephase response associated with bisphosphonates. Calcif Tissue Int 1997;61:386–392.
- Fisch P, Malkovsky M, Braakman E, Sturm E, Bolhuis RL, Prieve A, et al. γ/δ T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J Exp Med 1990;171:1567-79.
- 11. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, et al. Recognition by human $V\gamma 9/V\delta 2$ T cells of a groEL homolog on

Daudi Burkitt's lymphoma cells. Science 1990;250:1269-73.

- Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis *in vitro* and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol 2003; 112:780-6.
- Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 2002; 42:1228-36.
- Casetti R, Perretta G, Taglioni A, Mattei M, Colizzi V, Dieli F, et al. Drug-induced expansion and differentiation of Vγ2Vδ2 T cells *in vivo*: the role of exogenous interleukin-2. J Immunol 2005; 175:1593-8.
- McNeel DG, Malkovsky M. Immune-based therapies for prostate cancer. Immunol Letters 2005;96:3-9.
- Gougeon M-L, Malkovsky M, Casetti R, Agrati C, Poccia, F. Immunotherapy with phosphocarbohydrates, a novel strategy of immune intervention? Vaccine 2002;20:1938-41.
- 17. Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of $\gamma\delta$ T cells. Microbes Infect 2005;7:518-28.