Dengue: a new challenge for neurology

Marzia Puccioni-Sohler,1 Marco Orsini,2 Cristiane N. Soares3

1Serviço Patologia Clínica, Hospital Universitário Clementino Fraga Filho/Universidade Federal do Rio de Janeiro (HUCFF/UFRJ); Unidade de Neuroinfecção, Hospital Universitário Gaffree e Guinle/Universidade Federal do Estado do Rio de Janeiro (HUGG/UNIRIO) and Neurolife Laboratory, Rio de Janeiro;
2Secretaria de Saúde de Nova Iguaçu, Hospital Geral de Nova Iguaçu HGN, Rio de Janeiro;
3Serviço de Neurologia, Hospital dos Servidores do Estado and Hospital Quinta D’Or, Rio de Janeiro, Brazil

Abstract

Dengue infection is a leading cause of illness and death in tropical and subtropical regions of the world. Forty percent of the world’s population currently lives in these areas. The clinical picture resulting from dengue infection can range from relatively minor to catastrophic hemorrhagic fever. Recently, reports have increased of neurological manifestations. Neuropathogenesis seems to be related to direct nervous system viral invasion, autoimmune reaction, metabolic and hemorrhagic disturbance. Neurological manifestations include encephalitis, encephalopathy, meningitis, Guillain-Barré syndrome, myelitis, acute disseminated encephalomyelitis, polyneuropathy, mononeuropathy, and cerebromeningeal hemorrhage. The development of neurological symptoms in patients with positive Immunoglobulin M (IgM) dengue serology suggests a means of diagnosing the neurological complications associated with dengue. Viral antigens, specific IgM antibodies, and the intrathecal synthesis of dengue antibodies have been successfully detected in cerebrospinal fluid. However, despite diagnostic advancements, the treatment of neurological dengue is problematic. The launch of a dengue vaccine is expected to be beneficial.

Introduction

Dengue is an RNA virus that is grouped into four serotypes (DENV-1 through DENV-4) belonging to the genus Flavivirus (family Flaviviridae).1 Dengue infection represents the most destructive arboviral disease for humans. The number of countries reporting outbreaks has increased by 10-fold in the last 30 years and includes more than 100 countries in the Pacific-Asian region, the Americas, the Middle East, and Africa.2 Approximately 50-100 million infections occur each year resulting in approximately 25,000 deaths.3,4 The mosquitoes Aedes aegypti and Aedes albopictus are the vectors that deliver the virus to humans.4 The disease has become more common in high-income countries as a result of vector dissemination and increased travel. Dengue represents the second leading cause of acute fever in travellers.5

The clinical spectrum of the disease ranges from dengue hemorrhagic fever (DHF) and dengue shock syndrome to mild dengue fever to even oligosymptomatic or asymptomatic infection.6 Because dengue infection can be asymptomatic, the actual number of cases of dengue infection has been underestimated. Recently, neurological manifestations have been increasingly described in oligosymptomatic dengue, making it challenging to correlate neurological symptoms to the infection.7 The incidence of infection associated to neurological manifestations ranges from 1% to 5%.7,8 Therefore, new guidelines for the diagnosis of neurological dengue are required, especially for clinicians who are unfamiliar with its wide array of clinical presentations. The most common neurological presentations are encephalitis and encephalopathy, although every year cases of meningitis, Guillain-Barré syndrome (GBS), myelitis, acute disseminated encephalomyelitis, myositis, and neuropathy have been reported.6-8

In this review, we analyze neurological complications related to dengue infection, focusing on new concepts regarding the association of central and peripheral nervous system involvement and dengue infection that have recently emerged. Mild cases of dengue encephalitis with normal cerebrospinal fluid (CSF), patients with GBS without any signs or symptoms of the preceding infection, the intrathecal synthesis of specific antibodies, and new laboratory techniques are several of the new findings related to neurological dengue that are discussed in this review.9-11

Neuropathogenesis

The mechanisms of neuropathogenesis following dengue infection seem to be related to the specific type of neurological disease (Table 1). Viral and host factors have an important role in the disease pathogenesis.

Metabolic disturbance causing encephalopathy

Several factors secondary to the infection, such as cerebral anoxia, shock, edema and/or toxicity, caused by liver failure, thrombocytopenia leading to hemorrhages, and electrolyte dysfunction are determinants of dengue encephalopathy and not of encephalitis. It is crucial to differentiate both conditions that usually occur during DHF and dengue shock syndrome.12 Secondary to thrombocytopenia and dengue-associated coagulopathy and vasculopathy, an ischemic stroke could be triggered.13,14 Pathological studies in fatal cases revealed non-specific lesions, edema, vascular congestion, and focal hemorrhages.15

Direct central nervous system viral invasion

Dengue virus was detected in CSF as early as 1996, as was the presence of viral antigens in the central nervous system (CNS).16,17 DENV-2 and DENV-3 serotypes are most frequently associated with neurological complications.16,18 Immunoreactivity to DENV-4 has also been detected in neurons, microglia and
endothelial cells. However, the mechanisms underlying neuroinvasion and neurovirulence are not fully understood. The role of viral factors in dengue neuropathogenesis was demonstrated by mutating three amino acids in DENV-1, mapping to the structural protein E and non-structural protein NS3 helicase domains. The E protein seems to be involved in the pathogenesis of the disease, through the mediation of host-cell tropism. These mutations produced a neuroviral and the result was an extensive encephalitis and leptomeningitis in mice.

Encephalitis is the most common manifestation secondary to direct viral involvement and usually develops during the acute phase of infection. In a study using mice infected by dengue virus, it was possible to demonstrate that there was a breakdown of the blood-brain barrier leading to cerebral vasogenic edema. A dengue-induced cytokine immune response was responsible for this reaction and it seems to occur in humans. However, it is still not known if the virus passively crosses the blood-brain barrier during the course of systemic infection or whether it actively invades the CNS.

Other neurological diseases that accompany the acute febrile period and are related to viral invasion are meningitis, myositis and myelitis. Specifically, in cases of myelitis associated with dengue infection, viral invasion of the spinal cord produces a specific local immune response in the early stage of neurological disease (intrathecal synthesis of dengue Immunoglobulin G antibodies). Detection of the local synthesis of monospecific antibodies may be associated with the pathogenesis of the disease and indicates viral neuropotropism.

Autoimmune reaction

The postinfectious character related to the immunoaergic mechanism can determine acute disseminated encephalomyelitis, neuromyelitis optica, optic neuritis, myelitis or simply a post-infectious encephalopathy. The first brain autopsy to confirm this theory showed a perivenous demyelinating leukoencephalopathy. This delayed form of disease is most frequently observed in adults within 1-3 weeks of the onset of infection. Similarly, peripheral involvement, as observed in Guillain Barré syndrome, might have a similar postinfectious mechanism.

Neurological complications

Neurological involvement in dengue infection was considered to be a rare complication. However, recent reports of several dengue cases with neurological complications have changed this view.

Encephalitis and meningitis

Encephalitis is the most common neurological manifestation of dengue infection. Its frequency has been reported to range from 4.2% to as much as 51%. This difference in frequency depends on the predominant serotype DENV-2 and DENV-3 during epidemics. The clinical criteria for dengue encephalitis are: i) fever; ii) acute signs of cerebral involvement, such as altered consciousness or personality, seizures, or focal neurological signs; iii) presence of anti-dengue Immunoglobulin M antibodies or dengue genomic material in the serum and/or cerebrospinal fluid (which of these should be assayed for should be determined according to time from onset of infection); iv) exclusion of other causes of viral encephalitis and encephalopathy.

The main symptoms are seizures, altered consciousness, and headaches. Unexpectedly, the typical symptoms of dengue infection (myalgias, diarrhea, joint or abdominal pain, rash, and bleedings) are reported in only 50% of encephalitis cases. Therefore, dengue virus would not ordinarily be suspected to be the cause of the neurological disease.

The computed tomography (CT) and magnetic resonance imaging (MRI) findings are diverse. Normal parameters are not uncommon but hemorrhages, diffuse cerebral edema, and focal abnormalities involving the globus pallidus, the hippocampus, the thalamus, and the internal capsule can also be found. These lesions are hyper-intense as visualized by MRI. Analysis of CSF can demonstrate inflammatory reaction, with lymphomononuclear pleocytosis and normal glucose levels. However, normal CSF cellularity has been shown in more than half of patients with dengue encephalitis. The absence of pleocytosis in CSF has been described in 5% of viral encephalitis cases; we speculate that this number is underestimated with regard to dengue infection. Therefore, the diagnosis of encephalitis should not be discarded because of normal CSF cellularity.

The incidence of meningitis among serologically confirmed dengue cases ranges from 24.4% to 30% in children. Dengue meningitis rarely manifests in adults. Clinical signs are similar to other viral meningitis.

Acute disseminated encephalomyelitis

Acute disseminated encephalomyelitis (ADEM) is rarely described in association with dengue infection. One of the reported cases was neuromyelitis optica, an exceptional form of ADEM. The diagnosis of ADEM was based on the onset of neurological symptoms following the hyperpyrexic phase of dengue. As with other viruses, the pathogenetic mechanisms underlying ADEM suggest that the symptoms result from an immune system-mediated process. White matter lesions occur in several areas of the brain, such as the centrum semiovale, the corona radiata, the callosal-septal interface, and the thalamus. Thoracic spinal cord can also be involved, showing demyelinating lesions.

An autopsy was described in only one case in the literature. Histopathology from the lesions showed perivenous demyelination, macrophages and hemorrhages. As this patient had dengue hemorrhagic fever, the focal hemorrhages seen in the lesions were probably related to the patient’s thrombocytopenia.

Encephalomyelitis secondary to dengue infection usually has a favorable outcome, although some patients exhibit persistent neurological symptoms. Glucocorticoid is effective in treating encephalomyelitis, which is why an early diagnosis is critical for a good prognosis.

Myelitis

Myelitis due to dengue infection is an uncommon neurological manifestation. Its frequency ranges from 9.5% to 15%. Dengue myelitis appears between seven and 30 days following the onset of dengue infection.

<table>
<thead>
<tr>
<th>Metabolic disturbance</th>
<th>Viral Invasion</th>
<th>Autoimmune reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy</td>
<td>Encephalitis</td>
<td>Acute disseminated encephalomyelitis</td>
</tr>
<tr>
<td></td>
<td>Meningitis</td>
<td>Neuromyelitis optica</td>
</tr>
<tr>
<td></td>
<td>Myositis</td>
<td>Optic neuritis</td>
</tr>
<tr>
<td></td>
<td>Myelitis</td>
<td>Myelitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-infectious encephalopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guillain Barré syndrome</td>
</tr>
</tbody>
</table>

The incidence of meningitis among serologically confirmed dengue cases ranges from 24.4% to 30% in children. Dengue meningitis rarely manifests in adults. Clinical signs are similar to other viral meningitis.
Neurological symptoms may persist and may include paraparesis and sphincter dysfunction. MRI usually demonstrates lesions at the thoracic spinal level where there is a hyperintense signal (Figure 1). A unique case in which a gray matter abnormality was observed using MRI in a region corresponding to the anterior horn from the cervical to thoracic cord has been reported. Analysis of CSF reveals an increase in the albumin quotient (Alb Q) indicating a dysfunction of the blood-CSF barrier and the intrathecal synthesis of Immunoglobulin G (IgG) dengue antibodies. Based on specific antibody index, Puccioni-Sohler et al. found intrathecal synthesis of dengue IgG antibodies only in patients with myelitis despite also examining cases of encephalitis and GBS.

Guillain Barré syndrome and mononeuropathies

In isolated reports, dengue virus was described as a causative agent of GBS. In a previous study, Soares et al reported that GBS accounted for 30% of the neurological manifestations of dengue infection. However, dengue infection may have been underestimated as a causative agent of GBS. The authors reported seven cases (46.6% of all included GBS cases), presenting with dengue positive IgM in serum but with little to no clinical symptoms of the previous infection. The neurological picture of GBS cases induced by dengue infection is similar to that described in the literature concerning GBS caused by other infections in which ascending paraparesis is the principal manifestation. Treatment is usually effective and the prognosis is good. A single case of Miller Fisher that had dengue infection was also reported to have recovered spontaneously.

Evidence suggests that the clinical manifestations of GBS are the result of cell-mediated immunological reactions. Activated T cells could cross the vascular endothelium (blood-brain barrier) and recognize an antigen in the endoneurial compartment. T cells produce cytokines and chemokines which open the blood-brain barrier allowing antibodies to enter and Schwann cells to attack. Dengue virus would initiate this immunological event, leading to the disease. Myelin or axons could be the target of this immune response.

In conclusion, oligosymptomatic dengue underestimates the number of cases of GBS associated with dengue infection. This situation is complicated by the long period of time between onset of infection and neurological symptoms. In endemic areas, dengue infection should be tested as a possible etiological agent in cases of GBS. Finally, rare cases of long thoracic neuropathy, oculomotor palsy, and phrenic neuropathy have been related to dengue infection.

Myositis

Several viruses have been associated with inducing benign acute myositis. In a study in India, 50% of benign acute childhood myositis cases were attributed to dengue infection. Myositis has a wide clinical spectrum, ranging from mild proximal asymmetrical weakness of the lower limbs to severe, rapidly progressing,
Non-commercial use only

Review

iii) hemorrhagic CSF in cases of cerebro-

myelitis, and meningitis; ii) protein-cytologi-

cal synthesis of total IgG) in cases of encephalitis,

blood-CSF barrier dysfunction, and intrathecal

or an immunochromatographic rapid test.55

demonstration of: i) inflammatory reaction in

dengue patients by ELISA as detected by an assay that

chemical and hematologic abnormalities, such as throm-

bocytopenia, leukopenia, and hypokalemia, are

potential factors that influence the severity and

prognosis of dengue myositis.53,54

Laboratory studies

The diagnosis of acute dengue infection is

based on the detection of viral antigens or antibodies in blood.55-57 Viral antigens may be
detected in blood or CSF during the first week

after the onset of symptoms by such technique as
cell culture or tissue fixation, enzyme-

linked immunosorbent assay (ELISA), or poly-

merase chain reaction (reverse-transcriptase

PCR or real-time PCR) (Figure 2).11,16,31,58 The
detection of dengue IgM antibodies in serum

or the increase of dengue IgG antibody titer in

paired samples can be used to confirm serologi-
cal diagnosis of a recent infection.55,59,60 Specific

IgM reactivity for IgM may be found five
days after the onset of symptoms and may

persist for 30-60 days. Meanwhile, an increase

in dengue IgG antibodies occurs during the first

or second day in cases of secondary infec-

tion. Specific IgG antibody levels return to

baseline levels after 30-40 days.55 The detection

of specific antibodies is usually accom-

plished by ELISA but may also be detected by a

complement fixation technique, a neutraliza-
tion test, a hemagglutination inhibition assay,
or an immunochromatographic rapid test.55

Specific serum reactivity for IgM may be found

after five days of the onset of symptoms and may

persist for 30-60 days. Meanwhile, an increase

in dengue IgG antibodies occurs during the first

or second day in cases of secondary infec-
tion. Specific IgG antibody levels return to

baseline levels after 30-40 days.55 The detection

of specific antibodies is usually accom-

plished by ELISA but may also be detected by a

complement fixation technique, a neutraliza-
tion test, a hemagglutination inhibition assay,
or an immunochromatographic rapid test.55

Serum cross-reactivity is common in the sero-

logical tests with other flaviviruses, such as St.
Louis encephalitis, Japanese encephalitis, West Nile fever, and yellow fever.68

Analysis of CSF contributes to the neurologi-
cal diagnosis associated with dengue by the demonstration of: i) inflammatory reaction in

the CNS (pleocytosis, hyperproteinorhachia,

blood-CSF barrier dysfunction, and intrathecal

synthesis of total IgG in cases of encephalitis,

myelitis, and meningitis; ii) protein-cytologi-
cal dissociation in Guillain Barré syndrome;

ii) hemorrhagic CSF in cases of cerebro-

meningeal hemorrhage; iv) exclusion of other

infectious diseases; and v) detection of specif-
ic antibodies and viral antigens.5,11,31 However,
normal CSF does not exclude the possibility of

neurological complications associated with
dengue. Complications may occur, especially

in cases of encephalitis.10 Specific IgM and IgG

antibodies have been found in CSF in the early

stages of dengue CNS infection up until 5-7
days after the onset of neurological symptoms.
The dengue IgM immune response in CSF
detected by ELISA shows a high specificity (97-
100%) the neurological diagnosis associated

with dengue to be confirmed.

The sensitivity of IgM detection in CSF

ranges between 0% and 73%, depending on the

method used. The absence of specific IgM
detection in CSF does not exclude dengue as

the causative agent.7,11,17,27,61 On the other hand,
specific IgG in CSF is not useful as a diagnostic tool, as these antibodies may result

from a prior infection, and they cross the

blood-CSF barrier. The presence of intrathecal

synthesized specific antibodies is a potential

marker of myelitis associated with dengue and

seems to be related with the neuroinvasive

properties of the virus.9 Non-structural 1 anti-
gen (NS1 Ag) was found in the CSF of dengue

dengue patients by ELISA as detected by an assay that

exhibited a sensitivity of 50% and specificity of

100%.11 The combined use of NS1 Ag and

specific IgM antibodies increased the sensitivity

dengue analysis in CSF to 92%.11 The fre-

quency of detection of dengue viral RNA, using

PCR techniques (RT-PCR or real-time PCR) has

had variable success in CSF (0-83%).7,8,16,31 It depends on the neuroviral and

neuroinvasive phenotype of studied dengue virus, the stage of the disease, and

which method is employed. In fact, not all

neurological complications associated with
dengue are caused by the direct virus neuroin-

vasion.

Diagnosis

A diagnosis of neurological dengue needs to be

reevaluated, especially for clinicians who are

unfamiliar with its wide array of clinical presen-
tations. Diagnosis is currently based on the

detection of specific IgM antibodies or antigens

in the blood. In addition, analysis of CSF (for

the detection of specific antibodies and viral

antigens) has demonstrated great potential as a

diagnostic tool for neurological dengue and as

well as for providing a better understanding of

the dengue neuropathogenesis. In endemic areas

or in cases of recent travel to endemic regions,

dengue infection should be considered in the
differential diagnosis of encephalitis, myelitis,

Guillain-Barré syndrome, and meningitis, even

in the absence of a previous history of dengue

fever. The neurological complications associat-
ed with dengue may be underestimated, espe-
cially in cases in which there was a prior

oligosymptomatic/asymptomatic dengue infec-
tion. Improving the accuracy of diagnosis is important for the early treatment of the neurological complications, thereby avoiding unnecessary therapy and longer hospitalization, while searching for the presence of other diseases. More than ever, the development of a dengue vaccine needs to be the focus of research efforts seeking to control the disease.

References

