The 100 most cited papers in spinal deformity surgery: a bibliometric analysis

Shane C. O’Neill, Joseph S. Butler, Niall McGoldrick, Robert O’Leary, Keith Synnott
Cappagh National Orthopaedic Hospital, Finglas, Dublin, Ireland

Abstract

Spinal deformity is a condition that has been recognized for many millennia. There have been major advances in the treatment of spinal deformity in recent years and studies outlining new ideas can inspire others to further advance the specialty. The number of citations a paper receives may indicate the influence of that paper. It is therefore important that we evaluate and analyze the most cited works in our field. The aim of this study is to identify the 100 most cited papers relevant to spinal deformity surgery in the literature. A search through the Thomson Reuters Web of Science® for citations related to spinal deformity surgery was performed. The number of citations, mean citation number (total number citations/years since publication), journal, authors, year of publication and country of origin of the top 100 papers was recorded. The top 100 papers were cited a combined 17,646 times, ranging from 453 to 112. The majority of papers originated from the United States (71) and were published in 20 different journals. The decade 1990-1999 was the most prolific, with 36 of the 100 papers published during this time. Papers pertaining to the management of scoliosis (49) were the most common. This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery.

Materials and Methods

The top 100 most cited papers relevant to spinal deformity surgery were identified from a search of the SCI of the Institute for Scientific Information (ISI), using the Thomson Reuters Web of Science® search engine from 1945-2014. The following search strategy was performed in March 2014: Spinal deformity OR Scoliosis OR Kyphoscoliosis OR Kyphosis OR Lordosis OR Sagittal plane deformity OR Sagittal imbalance OR Coronal plane deformity OR Coronal imbalance OR spondylolisthesis. No limitation was applied to the search in terms of subject category or journal. Results were listed by citation number and assessed by two independent authors (SCON and JSB) for relevance to spinal deformity surgery with complete agreement between authors required for inclusion of a paper.

Results

The top 100 papers in spinal deformity surgery have been cited a combined 17,646 times. The top 100 papers and the number of citations are presented in Table 1. The most cited paper was by Harrington with 453 citations, while the 100th paper by Lee et al. was cited 112 times. The mean number of citations was 176, with a mean citation number of 8.33/year. The oldest paper included in the list was by Ponseti et al. Prognosis in idiopathic scoliosis published in 1950 with the most recent published in 2007 by Weinstein et al.

Papers not relevant to the topic were excluded. The resulting most cited 100 papers were then assessed for: title, journal, number of citations, mean citation number (total number citations/years since publication), authors, year of publication and country of origin.
Overall twelve countries contributed papers. The majority of the top 100 papers originated from the United States (71), followed by United Kingdom, France and Sweden (5 papers each); South Korea (4 papers); Australia, Canada, Germany (2 papers each); Switzerland, Japan, Denmark and Scotland (1 paper each).

Sixty-nine separate institutions contributed papers to the list. Washington University contributed the most papers (8), with the University of Iowa contributing 5. The Long Beach Memorial Medical Center contributed 4 studies, while other 9 papers were published by The Royal National Orthopedic Hospital, Stanmore, London (3 papers), the University of Louisville (3 papers) and the University of Gothenburg (3 papers).

Table 1. The top 100 most cited papers.

<table>
<thead>
<tr>
<th>1st author</th>
<th>Citations</th>
<th>1st author</th>
<th>Citations</th>
<th>1st author</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harrington13</td>
<td>453</td>
<td>Hafer16</td>
<td>183</td>
<td>Lowe15</td>
<td>131</td>
</tr>
<tr>
<td>Lenke16</td>
<td>408</td>
<td>Stokes17</td>
<td>182</td>
<td>Aebli18</td>
<td>130</td>
</tr>
<tr>
<td>King13</td>
<td>391</td>
<td>Suk20</td>
<td>181</td>
<td>Bunnell11</td>
<td>129</td>
</tr>
<tr>
<td>O’sullivan22</td>
<td>388</td>
<td>Kumar35</td>
<td>176</td>
<td>Kim23</td>
<td>128</td>
</tr>
<tr>
<td>Herkowitz25</td>
<td>347</td>
<td>Weinstein20</td>
<td>175</td>
<td>Gill27</td>
<td>128</td>
</tr>
<tr>
<td>Fischgrund23</td>
<td>346</td>
<td>Collis34</td>
<td>174</td>
<td>Asher14</td>
<td>127</td>
</tr>
<tr>
<td>Lonstein11</td>
<td>337</td>
<td>Weinstein19</td>
<td>172</td>
<td>West23</td>
<td>126</td>
</tr>
<tr>
<td>Beutler24</td>
<td>310</td>
<td>Weinstein16</td>
<td>165</td>
<td>Suk26</td>
<td>124</td>
</tr>
<tr>
<td>Jackson32</td>
<td>274</td>
<td>Beta31</td>
<td>162</td>
<td>Albert28</td>
<td>121</td>
</tr>
<tr>
<td>Bergofsky41</td>
<td>269</td>
<td>Dickson31</td>
<td>155</td>
<td>Mack24</td>
<td>121</td>
</tr>
<tr>
<td>Nuwer41</td>
<td>261</td>
<td>Vaille44</td>
<td>151</td>
<td>Riseborough45</td>
<td>121</td>
</tr>
<tr>
<td>Suk46</td>
<td>259</td>
<td>Wilte49</td>
<td>151</td>
<td>Gaines49</td>
<td>120</td>
</tr>
<tr>
<td>Stagnara49</td>
<td>251</td>
<td>Mcmaster20</td>
<td>150</td>
<td>Mcdonnell13</td>
<td>120</td>
</tr>
<tr>
<td>Wiltse27</td>
<td>245</td>
<td>Etebar2</td>
<td>149</td>
<td>Rosenberg18</td>
<td>120</td>
</tr>
<tr>
<td>Nachemson15</td>
<td>239</td>
<td>Aris25</td>
<td>148</td>
<td>Moller46</td>
<td>119</td>
</tr>
<tr>
<td>Warren57</td>
<td>238</td>
<td>Wilte26</td>
<td>148</td>
<td>Black29</td>
<td>119</td>
</tr>
<tr>
<td>Boyd40</td>
<td>233</td>
<td>Kim41</td>
<td>146</td>
<td>Benze42</td>
<td>119</td>
</tr>
<tr>
<td>Macwen41</td>
<td>225</td>
<td>Mardjetko44</td>
<td>146</td>
<td>Roussoul45</td>
<td>118</td>
</tr>
<tr>
<td>Gelb46</td>
<td>224</td>
<td>Wilte47</td>
<td>145</td>
<td>Myers45</td>
<td>118</td>
</tr>
<tr>
<td>Bridwell45</td>
<td>223</td>
<td>Brooks20</td>
<td>145</td>
<td>Katsuura11</td>
<td>117</td>
</tr>
<tr>
<td>Ponsetti27</td>
<td>222</td>
<td>Lenke29</td>
<td>143</td>
<td>Nilsonne14</td>
<td>116</td>
</tr>
<tr>
<td>Cochran33</td>
<td>218</td>
<td>Vaz34</td>
<td>142</td>
<td>Vedantam77</td>
<td>115</td>
</tr>
<tr>
<td>Kim34</td>
<td>216</td>
<td>Brodkle23</td>
<td>141</td>
<td>Ransford16</td>
<td>115</td>
</tr>
<tr>
<td>Thomsen41</td>
<td>209</td>
<td>Ponsetti22</td>
<td>140</td>
<td>Fox14</td>
<td>115</td>
</tr>
<tr>
<td>Boxall44</td>
<td>207</td>
<td>Rowe24</td>
<td>139</td>
<td>Asher44</td>
<td>114</td>
</tr>
<tr>
<td>Morrissey45</td>
<td>206</td>
<td>Emans36</td>
<td>139</td>
<td>Herman13</td>
<td>114</td>
</tr>
<tr>
<td>Glassman30</td>
<td>201</td>
<td>Lonstein13</td>
<td>138</td>
<td>Collier42</td>
<td>114</td>
</tr>
<tr>
<td>Glassman33</td>
<td>201</td>
<td>Bunnell20</td>
<td>138</td>
<td>Dwyer15</td>
<td>114</td>
</tr>
<tr>
<td>Carman48</td>
<td>200</td>
<td>Engler27</td>
<td>138</td>
<td>Theodorou19</td>
<td>113</td>
</tr>
<tr>
<td>Liljenqvist49</td>
<td>196</td>
<td>Winter48</td>
<td>138</td>
<td>Levine19</td>
<td>113</td>
</tr>
<tr>
<td>Rogala32</td>
<td>194</td>
<td>Nachemson10</td>
<td>138</td>
<td>James116</td>
<td>113</td>
</tr>
<tr>
<td>Sharma36</td>
<td>192</td>
<td>Zdeblick16</td>
<td>137</td>
<td>Lee177</td>
<td>112</td>
</tr>
<tr>
<td>Newman184</td>
<td>186</td>
<td>Shands135</td>
<td>135</td>
<td>Jackson111</td>
<td>112</td>
</tr>
</tbody>
</table>

Figure 1. Publication number by decade.
The top 100 papers were published in 20 different journals, which represented orthopedic, general and other sub-specialty interests. The Journal of Bone and Joint Surgery - American volume published the greatest number of papers (39), followed closely by Spine journal (32), The Journal of Bone and Joint Surgery - British volume (5) and the European Spine Journal (4). A complete list of journals can be found in Table 2.

A number of authors were represented on multiple papers in the top 100. Lenke and Bridwell both appeared on 8 of the papers on the list, with Ponseti and Winter appearing on 5. Wilse published the greatest number of papers as first author (4). Suk, Nachemson, Moe, Kim, Herkowitz, Glassman, Dimar, Bunnell and Bradford appear in 3 papers each.

While a variety of spinal deformity topics are represented in the top 100, papers specifically relating to scoliosis management (49) were the most common topic.

Discussion

In our study, the Science Citation Index was interrogated to assess the most cited papers in spinal deformity surgery in order to attempt to produce a list of citation classics in the field. It provides an insight into some of the most influential papers in the area of spinal deformity surgery and chronicles the practice-changing work that has been published over the past 70 years.

The most cited paper was Treatment of scoliosis - correction and internal fixation by spine instrumentation by Harrington in 1962, which was cited 453 times. The paper described a new operative technique for the treatment of scoliosis. Harrington described the use of internal fixation and distraction using rods to correct the deformity. While his initial results were mixed it marked the beginning of a new era in the surgical treatment of scoliotic deformity. Numerous alterations were made to Harrington’s instrumentation and innovation in internal fixation for scoliosis correction continues today.

The second most cited paper was by Lenke et al. Adolescent idiopathic scoliosis published in 2001, cited 408 times. This paper proposed a new two-dimensional classification system for adolescent idiopathic scoliosis that attempted to determine the level of fusion required at the time of surgery. It sought to improve upon the limitations of the existing classification proposed by King et al. a paper which has been cited 391 times and is the third most cited paper in our study. Comparative studies have shown the new classification system by Lenke et al. to be more reproducible and reliable than King et al. There is as significant time period between the publication year of the 1st and 2nd paper on our list. Although Harrington’s paper has more citations in absolute terms, this has been achieved over a 50-year period. In contrast to this, Lenke et al. published 13 years ago and thus the mean number of citations per year of this paper is 29.14, which is significantly higher than the mean citation of 8.55 for Harrington. This finding suggests that the mean citation number may be useful in assessing the immediacy of the impact a paper has, when comparing publications from different time periods.

A total of 12 countries contributed papers to the top 100 most cited papers in spinal deformity surgery. All countries are from the developed world with a high degree of health care expenditure. The United States contributed 71 papers to the list, which is more than twice the number of all the other countries combined. This is in keeping with other similar studies across a number of medical specialties, and correlates to the volume of orthopedic practice and research output that exists in the United States. In terms of decade of publication, 77 of the top 100 papers have been published since the 1980s, with 1990s the most prolific period for publication, accounting for 36 papers. High impact factor orthopedic journals dominated the list with The Journal of Bone and Joint Surgery - American volume and Spine publishing the most articles, emphasizing the prestige and influence these journal exert in the field of orthopedic surgery. From our analysis, it would appear that for an author to achieve a highly cited paper, it is most likely to be published from a United States, English speaking institution and published in a high impact journal.

There are a number of inherent limitations to this form of citation analysis, which have been highlighted in previous papers using similar methods. The SCI citation database was searched in this study using the Thomson Reuters Web of Science search engine. The ISI began collecting citation information in 1945 and therefore articles published prior to this were not included in this study. Previous studies limited the search to journals within specific subject categories. We placed no restriction on our search and feel this resulted in less likelihood of excluding potentially relevant articles and therefore achieving a more representative list of articles for analysis. It has been suggested that more recent papers are at a disadvantage with older papers more likely to be cited. The use of mean citation number (total number citations/years since publication) in our analysis takes into account year of publication and allows a relative comparison of citation to be made between recent and more historic papers.

Self-citation, journal bias and language bias were not controlled for in this study. Articles published in high impact journals are more likely to reach a wider audience and therefore have a greater potential for citation. All papers in the top 100 were written in the English language. There are also a number of phenomenon that can influence citation analysis.

Table 2. Journals of publication.

<table>
<thead>
<tr>
<th>Journal</th>
<th>Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal of Bone and Joint Surgery-American Volume</td>
<td>39</td>
</tr>
<tr>
<td>Spine</td>
<td>32</td>
</tr>
<tr>
<td>Journal of Bone and Joint Surgery-British Volume</td>
<td>5</td>
</tr>
<tr>
<td>European Spine Journal</td>
<td>4</td>
</tr>
<tr>
<td>New England Journal of Medicine</td>
<td>2</td>
</tr>
<tr>
<td>Journal of Spinal Disorders</td>
<td>2</td>
</tr>
<tr>
<td>Journal of Neurosurgery</td>
<td>2</td>
</tr>
<tr>
<td>Acta Orthopaedica Scandinavica</td>
<td>2</td>
</tr>
<tr>
<td>Medicine</td>
<td>1</td>
</tr>
<tr>
<td>Evoked Potentials-Electroencephalography and Clinical Neurophysiology</td>
<td>1</td>
</tr>
<tr>
<td>Journal of Neurology Neurosurgery and Psychiatry</td>
<td>1</td>
</tr>
<tr>
<td>American Journal of Pathology</td>
<td>1</td>
</tr>
<tr>
<td>Annals of Internal Medicine</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Orthopaedics and Related Research</td>
<td>1</td>
</tr>
<tr>
<td>International Orthopaedics</td>
<td>1</td>
</tr>
<tr>
<td>Annals of Thoracic Surgery</td>
<td>1</td>
</tr>
<tr>
<td>Journal of Bone and Mineral Research</td>
<td>1</td>
</tr>
<tr>
<td>American Journal of Roentgenology</td>
<td>1</td>
</tr>
<tr>
<td>Radiology</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Imaging</td>
<td>1</td>
</tr>
</tbody>
</table>
Obliteration by incorporation is one such phenomenon. It describes the observation that some highly influential or classic papers become so ingrained into common knowledge that they are no longer deemed necessary to cite. Incomplete citing can also occur. It describes the situation when citations are made by the author to persuade the reader rather than to give accurate acknowledgement to those that influenced their work.

Conclusions

This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This present study provides a list of some of the most influential papers that have helped shape the specialty over the past 70 years. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery.

References


