Antibacterial prophylaxis in neutropenic children with cancer

Angelica Barone
Pediatric Hematology and Oncology Unit, Department of Pediatrics, Azienda Ospedaliero-Università di Parma, Italy

Abstract

During the period of neutropenia induced by chemotherapy, patients have a high risk of infection. The use of antibiotic prophylaxis to reduce neutropenia-related complications in patients with cancer is still disputed. Recent meta-analysis and clinical trials demonstrated that antibiotic prophylaxis with quinolones reduces febrile episodes, bacterial infections and mortality in adult oncological patients with neutropenia induced by chemotherapy in acute leukaemia. In paediatric patients, the only randomized, double-blind, prospective study until now suggests that amoxicillin/clavulanate may represent an effective prophylactic treatment in reducing fever and infections in oncological children with neutropenia, with an efficacy that is statistically demonstrated only in patients with acute leukaemia. Considering the risk of resistances, antibiotic prophylaxis should be used only in selected patients.

Introduction

During the period of neutropenia induced by chemotherapy, patients have a high risk of infections, with a risk-rate related to the level and duration of neutropenia.1 Bacterial infections, proved in a majority of cases, are a major cause of disease and death in neutropenic patients, with some differences according to the aggressiveness of chemotherapy.2 3 The use of antibiotic prophylaxis to reduce neutropenia-related infectious complications in patients with cancer, mostly used in adults, is still disputed. These antimicrobial agents are given to patients at the beginning of neutropenia, without fever or other signs of infection.4 Neutropenia is defined as an absolute neutrophil count lower than 500/mmc or under 1,000/mmc if rapidly decreasing.5 The risk is higher if neutropenia lasts longer than 7 days. Fever is defined by body temperature equal to or higher than 38.5°C or a temperature of 38°C lasting for more than an hour or 38°C or more measured at least twice in 12 hours.5 6

Methods

The terms neutropenia & similar, antibiotic & similar, prophylaxis & similar, cancer & similar, fever & similar were crossed in the Cochrane Library, MEDLINE and EMBASE from January 1980 to October 2010.

Results

Considering that 80% of infections in neutropenic patients originate from endogenous bacterial flora, and about half of these are acquired in the hospital,7 the first approach was the reduction of intestinal flora through the use of non-absorbable antibiotics. Intestinal decontamination was either total or partial, if anaerobic flora was preserved. Antibiotics mostly used were gentamicin, vancomycin, colistin or neomycin/polymyxin.8 However, a poor patient compliance associated with the risk of ressetlement by opportunistic or resistant bacteria led to the failure of the prophylaxis.9 Selective decontamination required careful monitoring of the intestinal flora. Afterwards the drug of choice became TMP-SMX, frequently used in association with nystatin or amphotericin B, even if it sometimes lengthened neutropenia.10 However the administration of TMP-SMX was a systemic prophylaxis, as far as it is an adsorbable antibiotic. Fluoroquinolones are interesting drugs for oral prophylaxis, due to their bioavailability, wide antibacterial spectrum, sparing of the anaerobic intestinal flora, bactericide action, good tolerance and absence of myelosuppressive effect.11 However, their use is contraindicated for prophylaxis in patients under 18 years of age because of their possible interference with osteocartilagineous development. Guidelines from the Infectious Diseases Society of America (IDSA) in 2002 recommended the use of antibiotic prophylaxis for a period as short as possible and in a small number of patients, in order to avoid the risk of developing bacterial resistance and because of the unseen reduction in mortality despite the decreased rate of fever episodes.2 3 However some meta-analysis and clinical trials showed that prophylaxis with fluoroquinolones reduces fever episodes, clinically and microbiologically proven bacterial infections, infection-related and overall mortality in adult patients with acute leukaemia.12 13 A large clinical trial in adult patients with solid tumours undergoing standard chemotherapy did not show the same results.14 Guidelines from ECIL (European Conference on Infections in Leukaemia) and NCCN (US-National Comprehensive Cancer Network) recommend prophylaxis with quinolones in adult patients undergoing chemotherapy for acute leukaemia.15 16 According to other Authors, prophylaxis with quinolones should also be considered in patients with solid tumour or lymphoma at the first block of chemotherapy since it is frequently associated with a 4°-degree neutropenia.17 18

In paediatric patients, the only randomized, double-blind 2-year multicentric AIEOP (Italian Association of Pediatric Hematology and Oncology) prospective study on 173 children suggested that amoxicillin/clavulanate may be an effective prophylactic treatment in reducing fever and infections in neutropenic children with cancer, although its efficacy has been statistically demonstrated only in patients with acute leukaemia and lymphoma. In the general population a clinically significant reduction (12%) in fever and infections was observed, comparing to the placebo group, although not statistically significant. Authors concluded that, due to the risk of developing resistances, antibiotic prophylaxis should be used with caution in a selected group of patients and for short periods of time.19 Another paediatric study assessed the use of ciprofloxacin in 69 children with acute lymphoblastic leukaemia during reinduction phases, observing a statistically significant reduction in the incidence of Gram-negative bacteremias and related admissions to the hospital; however the design of the study considered previous patients as control group.20 A retrospective study conducted by the St. Jude group on antibiotic prophylaxis in 78 consecutive paediatric patients with acute myeloid leukaemia undergoing chemotherapy showed a significant reduction in incidence and mortality by septicaemia after prophylaxis with...
intravenous cefepime or intravenous vancomycin associated with oral ciprofloxacin.4

There are few data on what concerns repeated-
ated neutropenic periods in the same patients.
The positive effect of antibacterial prophylaxis reported in a meta-analysis considered ran-
domized trials including only one neutropenic period per patient.2 This beneficial effect of
prophylaxis may disappear in patients with repeated neutropenic periods as shown by
Castagnola21,22 and Cullen.14 In order to evaluate
the efficacy of repeated cycles of antibiotic pro-
phylaxis, the number of multicenter clinical
trials with a very large number of oncological
patients should be increased.

The prolonged administration of wide spec-
trum antibiotics can cause either the onset of
bacterial resistance and toxicity. The onset of
resistant strains is a justified concern, and has
been reported by centres using prophylaxis with fluoroquinolones.23 However a large and
recent meta-analysis was not able to demon-
strate a significant increase in colonization and
infections caused by fluoroquinolone-
resistant bacteria in patients undergoing pro-
phylaxis.24 However these results are limited
by the lack of data reported in trials: in less
than half of the studies microbiologic surveil-
ance was assessed and data on resistant bac-
teria colonization were reported; less than a
third reported data on quinolone-resistant bac-
teria infections. Observation length was not
prolonged enough to properly evaluate the
effect of antibiotic prophylaxis on resistances. Therefore, at the moment, long-term effects of
antibiotic prophylaxis on microbiologic resist-
ances are still unknown.11,12

Discussion

There are some patient groups that may
benefit from antibiotic prophylaxis. However, the wide and prolonged use of antibiotic pro-
phylaxis can lead to the onset of resistant bac-
teria, nullifying the effect of prophylaxis. There-
fore, antibiotic prophylaxis in pediatric
patients with cancer should be used only in
selected cases of acute leukemia, with amox-
icillin/clavulanate (at a dose of 25 mg/kg twice
day), at the end of chemotherapy blocks,
so quinolones are contraindicated in
patients under 18 years of age. The choice of a
prophylaxis policy for patients at higher risk of
infections requires the adoption or the imple-
m entation of a microbiological surveillance
program.

References

1. Pizzo PA. Management of fever in patients
with cancer and treatment-induced neu-
2. Gafter-Gvili A, Fraser A, Paul M, Leibovici
L. Met-Analysis: antibiotic prophylaxis
reduces mortality in neutropenic patients.
prospective study on the epidemiology of
febrile episodes during chemotherapy-
induced neutropenia in children with can-
cer or after hemopoietic stem cell trans-
plantation. Clin Infect Dis 2007;45:1296-
304.
antibiotics reduce morbidity due to septicemia
during intensive treatment
2002 Guidelines for the use of antimicro-
bial agents in neutropenic patients with
6. Viscoli C, Castagnola E. Prophylaxis and
empirical therapy of infection in cancer
patients. In: Mandell, Douglas and
Bennett. Principles and Practice of Infectious Diseases. 6th ed. Churchill
of infection in acute non-lympho-
cytic leukemia: significance of hospital
acquisition of potential pathogens. Ann Int
8. Hawthorn JW. Critical appraisal of anti-
microbials for prevention of infections in
unimunocompromised hosts. Hematol
9. Guiot HF, van der Broek J, van dee Meer
JW, van Furth R. Selective antimicrobial
modulation of the intestinal flora of
patients with acute nonlymphocytic
leukemia: a double blind, placebo-con-
10. Gualtieri RJ, Donowitz GR, Kaiser DL et
al. Double-blind randomized study of
prophylactic trimethoprim/sulfamethoxazole
in granulocytopenic patients with hemat-
ologic malignancies. Am J Med 1983;74:934-
40.
11. Engels EA, Lau J, Barza M. Efficacy of
quinolone prophylaxis in neutropenic can-
cer patients: a meta-analysis. J Clin Oncol
Levofloxacin to prevent bacterial infection
in patients with cancer and neutropenia. N
Antibacterial prophylaxis in neutropenic
Antibacterial prophylaxis after chemother-
apy for solid tumors and lymphomas. N
15. Meunier F, Lukan C. The first European
Conference on Infections in Leukaemia.
Prevention and treatment of cancer-relat-
ed infections. J Natl Compr Cancer Netw
Rational selection of patients for antibac-
terial prophylaxis following chemotherapy.
18. Pascoe J and Steven N. Antibiotics for the
prevention of febrile neutropenia. Curr
19. Cullen M and Baijal S. Prevention of
febrile neutropenia: use of prophylactic
antibiotics. British J Cancer 2009;101:S11-
14.
multicenter, randomized, double-blind
placebo-controlled trial of amoxicillin/
clavulananate for the prophylaxis of fever
and infection in neutropenic children with
65.
pilot study of prophylactic ciprofloxacin
during delayed intensification in children
with acute lymphoblastic leukaemia.
Differences in the proportions of fluoro-
quinolone-resistant Gram-negative bacte-
ria isolated from bacteraemic children
with cancer in two Italian centres. Clin
23. Kern WV, Klose K, Jellen-Ritter AS.
Fluoroquinolone resistance of Escherichia
coli at a cancer centre: epidemiological
effect and effects of discontinuing and
re-introducing quinolone use in neu-
ropenic patients with leukaemia. Eur J
24. Ro Ji, Tegtmeier BR, O’Donnell MR.
Antibacterial prophylaxis in children with
wancer and neutropenia. N Engl J Med
2006;354:1.
L. Effect of quinolone prophylaxis in
febrile neutropenic patients on microbial
resistance: systematic review and meta-
analysis. J Antimicrobial Chemotherapy
2007;59:5-22.
26. Viscoli C. Antibacterial prophylaxis in neu-
ropenic patients. Int J Antimicrobial
Agents 2007;305:560-5.

[Pediatric Reports 2011; 3:e3]