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Abstract 

The Collaboratory for the Study of
Earthquake Predictability (CSEP) is a global
project aimed at testing earthquake forecast
models in a fair environment. Various metrics
are currently used to evaluate the submitted
forecasts. However, the CSEP still lacks easily
understandable metrics with which to rank the
universal performance of the forecast models.
In this research, we modify a well-known and
respected metric from another statistical field,
bioinformatics, to make it suitable for evaluat-
ing earthquake forecasts, such as those sub-
mitted to the CSEP initiative. The metric, orig-
inally called a gene-set enrichment score, is
based on a Kolmogorov-Smirnov statistic. Our
modified metric assesses if, over a certain
time period, the forecast values at locations
where earthquakes have occurred are signifi-
cantly increased compared to the values for all
locations where earthquakes did not occur.
Permutation testing allows for a significance
value to be placed upon the score. Unlike the
metrics currently employed by the CSEP, the
score places no assumption on the distribution
of earthquake occurrence nor requires an arbi-
trary reference forecast. In this research, we
apply the modified metric to simulated data
and real forecast data to show it is a powerful
and robust technique, capable of ranking com-
peting earthquake forecasts. 

Introduction

The Collabotory for the Study of Earthquake
Predictability (CSEP) is an initiative to test
earthquake forecast models in a fair environ-
ment.1 The CSEP is a rapidly expanding and
dynamic experiment. The numbers of forecast
models and forecast regions have increased
remarkably since the start of the experiment
(a full list of forecast regions is available at
http://www.cseptesting.org/home). The initial
forecast evaluation metrics have been revised
and supplemented with new metrics. The
revised evaluation metrics, in combination
with the more recent metrics, allow us to gain
a deeper understanding of the forecast models’
capabilities.

The metrics originally employed by the

CSEP to test the abilities of the submitted
models include the likelihood based L-, N-, and
R- tests.2 These tests have been supplemented
recently with the M- and S- tests.3 The N-, M-
and S- tests investigate the consistency of the
rate, magnitude and spatial elements of the
forecast with the observations. The L-test gives
a broad evaluation of the forecast by combin-
ing the rate, magnitude and space elements of
the forecast.3 Finally, the R-test compares the
performances of two forecasts to each other.2

Although these tests are an essential first step
towards verifying a forecast’s consistency with
the observations and can potentially be used to
rank forecasts, they require an assumption of
a Poisson (or other) distribution2 and they do
not show if a forecast is good. 

The likelihood metrics have been comple-
mented with Receiver Operator Characteristic
(ROC) curves, Molchan diagrams4 and the
Area Skill Score (ASS).5,6 The ROC curves are a
graphical technique that compare to a random
prediction. However, the random prediction
baseline is not a realistic reference model and,
therefore, the ROC is not advocated as a pow-
erful technique to evaluate earthquake fore-
casts.5 The Molchan diagram is closely related
to the ROC curves; however, the Molchan dia-
gram can incorporate a non-random reference
model. The ASS summarizes the Molchan dia-
gram by considering the area above the
Molchan trajectory. Although these techniques
are generally interpretable, they all require the
specification of a reference model.

More recently, Rhoades et al.7 have proposed
two fast and easily interpretable alternatives to
the original R-test. The first is based on the
classical Student’s t-test, and the second is
based on the non-parametric alternative to the
Student’s t-test. With these proposed metrics,
earthquake forecasts are compared to each
other in a round robin fashion. Obviously, they
cannot be used to investigate the performance
of a single model; a reference forecast of some
description is also required.

Clements et al.8 demonstrate the applicabil-
ity of modern space-time point process evalua-
tion techniques on CSEP forecasts. The
authors show how deviance residuals can be
used to compare two forecasts on a bin-by-bin
basis; and how Pearson residuals can highlight
the differences between expected and
observed values in each bin. The authors also
describe how the weighted L-test can evaluate
if the clustering (or lack of) within the forecast
is observed within the observations. However,
both the Pearson residuals and weighted L-test
cannot provide information about the model in
areas without earthquakes, so the authors also
introduce the concept of super-thinning,
which, in combination with the weighted-L
test, can be used to highlight any area where
the model is fitting badly.

All of these currently used or proposed eval-

uation metrics play an important role towards
evaluating the performances of forecast mod-
els. However, there are some limitations of
these models, namely the specification of an
arbitrary probability distribution for each bin’s
observation (currently the Poisson distribution
is used) and the necessity of a reference
model. Given the rapid increase in the number
of submitted forecast models and regions, new
evaluation metrics that both clearly indicate
good models and overcome some of the limita-
tions of the current metrics are required. Here
we describe an easily interpretable and compu-
tationally efficient metric that can be used to
evaluate and rank forecasts in the spatial
domain without a reference distribution and
with a minimum number of assumptions. The
competing models must forecast and be evalu-
ated on the same area over the same time peri-
od. To create a metric that can be used to rank
the submitted forecasts in the spatial domain
with a minimal number of assumptions, we
propose a well-known and respected metric
commonly used in Bioinformatics. The metric,
originally called a gene set enrichment score
(GSES)9 is described in the Enrichment Score
Metric section. After describing the algorith-
mic details of the metric we illustrate the
method on both real and simulated forecasts. 

Our future goal is to submit this metric to
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the various global CSEP initiatives, so that it
can be used to evaluate those submitted fore-
cast models. Therefore, the main aim of this
manuscript is to explain the proposed metric
in terms of its usage with CSEP-like forecasts.
We direct the reader to the references for
detailed descriptions of CSEP forecasts.2,10,11 A
CSEP forecast must specify the expected num-
ber of earthquakes for a set of latitude-longi-
tude-magnitude bins. A forecast for a single
latitude-longitude bin comprises the numbers
of earthquakes that are expected to occur over
a specified time period for a specified set of
magnitude ranges within that bin. Here, for
simplicity, we do not consider the forecast for
each magnitude range within each geographi-
cal bin. We simply sum over all magnitude
ranges for the bin and use this single number
as the bin’s prediction. (See Discussion and
Conclusions).

The enrichment score metric
The original GSES assesses the degree to

which a predefined set of genes cluster toward
the top (or bottom) of a much larger list of
genes that have been ranked in some fashion.9

For example, the genes may be ranked accord-
ing to their average difference in expression
for two conditions (such as cancer and non-
cancer) evaluated over a set of samples. Then,
if the set of genes occurs towards the top (or
bottom) of the list, it can be assumed that this
gene set is somehow related to the class dis-
tinction between the two conditions.9

To modify the GSES to make it suitable for
evaluating forecasts, we rank the forecast val-
ues over the experiment space. We rank the
forecast values in decreasing order. We use the
set of bins where earthquakes occur as our
gene set. Then, by using the same technique as
described in the original GSES article, we can
assess if the set of bins where earthquakes
occurred are toward the top (or bottom) of our
ranked list.9

To calculate the degree to which our earth-
quake set occurs at the top of the ranked fore-
cast list, we calculate a running-sum statistic.
The running-sum statistic starts at zero. At
each bin in the list, we increase the statistic if
an earthquake has occurred in that bin, other-
wise we decrease it. Our final evaluation of the
forecast is given by the maximum deviation
from zero of this statistic. We give the exact
algorithmic details below (Algorithm 1). 

Algorithm 1. The enrichment score algo-
rithm.

Step 1. Rank the forecast values of the N
forecast bins in decreasing order to form a list,
L. If two or more forecast values are identical,
randomly rank the identical values.  

Step 2. Set the value of the variables Phit and
Pmiss to zero. Move through the ranked list, L,
and calculate the value of Phit and Pmiss at each

bin in the list. At bin i:

(0.1)

where S is the set of indices indicating the
positions of bins in the ranked list where
earthquakes are observed; fj is the forecast

value of the jth bin in the list; ;  

and NH is the number of bins where earth-
quakes are observed. 

Step 3. Calculate the enrichment score as
the maximum deviation from zero of the run-
ning sum statistic given by Phit - Pmiss.

We refer to our metric as an earthquake
forecast enrichment score (EFES). Our EFES
will assess if, over a certain time period, the
forecast values at locations where earthquakes
have occurred are significantly toward the top
of the list (enriched) compared to the forecast
values of bins where earthquakes did not
occur. For a set of observed earthquakes that
are randomly distributed throughout the L, the
EFES will be small9 and close to zero. The EFES
is limited to lie between -1 and 1. An EFES of 1
shows that the earthquakes all occurred in
bins with the highest forecast values; an EFES
of -1 shows that the earthquakes all occurred
in bins with the lowest forecast values.

If we set p=0, the EFES is identical to the
standard Kolmogorov-Smirnov (K-S) statistic
and we are testing if the distribution of fore-
cast values for bins where earthquakes occur
is equal to the distribution of forecast values
for bins where earthquakes do not occur.9 In
the original GSES paper, if p=0, high GSES are
obtained for sets found in the middle of the
list.9 Similarly, if we set p=0, we can potential-
ly obtain a high EFES if our earthquakes occur
close together at some point in the list,
because we would be weighting each bin’s
forecast value equally. So as to avoid obtaining
a high EFES for a set of earthquakes found in
the middle of the list, which would reflect a
poor forecast, we employ the weighting factor
p=1, recommended by Subramanian et al.9

The EFES statistic is similar to the recent
work of Rhoades et al.7 who also illustrate a K-
S like statistic to test if the distribution of fore-
cast values where earthquakes are observed is
equal to the distribution of forecast values over
all bins. However, here we set p=1  to consider
the forecast values of bins where earthquakes
occur and our metric is then based on an
extension of the K-S statistic (which would
test if the distribution of forecast values where
earthquakes are observed is equal to the distri-
bution of forecast values where earthquakes
are not observed). 

Permutation testing allows for a signifi-
cance value to be placed upon the score.9 We
permute the list of bins where earthquakes are
observed and recalculate the enrichment
score. Repeating this process we obtain a dis-

tribution of enrichment scores with which to
compare our score. Therefore, the metric can
be used to assess the validity of a single fore-
cast, even if there is no available reference
model. We would like to point out here that we
are testing how well the forecast would per-
form against randomly distributed seismicity.
It is well known that seismicity is not distrib-
uted randomly and another method of permu-
tation may be more appropriate. For the exam-
ples used here, we use this simple approach.

The reader can see that the EFES metric
considers only the number of earthquakes pre-
dicted in each cell and does not require an
arbitrary probability distribution to be speci-
fied for the observation in each bin. One disad-
vantage of this approach is that if a model gave
a 1 in 3 probability of zero, one, or two earth-
quakes in a particular bin and three earth-
quakes occurred, the EFES would not distin-
guish this forecast as incorrect, whereas a
likelihood test should. However, we believe the
EFES provides more flexibility by not forcing
an arbitrary probability distribution.

An illustration of the metric on
both real and simulated data

EFES and real forecast data
We first illustrate the EFES on the forecast

model we developed and submitted to the CSEP
Japan initiative.12 Figure 1 (left) shows the
forecast for the model for the year 2010. Each
value is the predicted rate of M5 or greater
earthquakes for each bin (0.1°¥0.1°). The
magnitude of the earthquake is determined by
the Japan Meteorological Agency (JMA). We
plot with a log scale and do not plot bins with
less than 0.001 expected rate of earthquakes
(although we include them in our calcula-
tions). To create this forecast we use earth-
quakes only to the end of 2009. The plot direct-
ly below shows where the M5 or greater earth-
quakes occurred during 2010. We use the same
data as that used by the CSEP Japan initia-
tive.13 More recent data cannot be considered
because of the delay in publication of the cata-
log.13

We calculate the enrichment score for the
observed set of earthquakes. The correspon-
ding enrichment score profile for this set is
shown in Figure 1. The top portion of the
enrichment score profile shows the running
sum statistic calculated from (0.1). The y-axis
shows the enrichment score. The largest devi-
ation from zero is also marked with a green
vertical line. The shape of the EFES profile will
change based on the forecast and set of
observed earthquakes, as shown in the later
figures. Below the running sum statistic we
can see the bins where earthquakes occurred.
These lines are drawn three-bins-wide so that
they can be seen in the plot. These bins have
been sorted in decreasing order of their fore-
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cast value. Forty-eight earthquakes were
observed, occurring in 43 distinct bins. Five
earthquakes were observed in one bin, two
earthquakes were observed in another, and all
the remaining bins had only one earthquake.
The EFES is 0.82. Therefore, the earthquakes
tend to cluster in the higher forecast bins. 

One hundred permutations were run and a
score this high was only observed by chance
three times. Therefore, the EFES is significant
at the 5% level. We prepared a histogram of the
permutations and marked our observed EFES
as a green vertical line in the lower part of the
enrichment score profile. By using the permu-
tation test, this forecast can now be investigat-
ed without requiring an arbitrary reference
distribution.

EFES and simulated data
The EFES was also applied to simulated data

to show it is a powerful and robust technique.
Forecasts were simulated for both the All Japan
area, specified by the Japan CSEP group, and
the California area, specified by the United
States CSEP initiative.10,13 The Japanese area
has 20,062 bins; the California area is smaller
with 7682 bins. The simulated scenarios are
shown in Figure 2. 

The first scenario is a forecast where all
bins are assigned a high forecast value. Here
we assigned all bins a value between 0.8 and 1.
We sampled 1% of the bins, and assigned these
bins an earthquake. The observed earthquakes
are shown as green crosses. This simulated
forecast for the Japan region is shown in
Figure 2A along with the obtained ES profile.
The ES profile is drawn in an identical manner
to Figure 1(C). The top portion of the enrich-
ment score profile shows the running sum sta-
tistic calculated from (0.1). Below the running
sum statistic, we can see the bins where earth-
quakes were simulated to occur. We draw these
lines three-bins-wide so that they can be seen
in the plot. These bins are sorted by their fore-
cast value, in decreasing order. We assign
earthquakes to bins randomly, so we can see
here that the earthquakes are distributed ran-
domly down the list. The histogram shows the
result of the permutation testing. One hundred
permutations were used. The green vertical
line marks the original EFES obtained directly
above. Unsurprisingly, the original score was
not significant. 

The second scenario is almost identical to
the first. However, here we assign all bins a
forecast value between 0 and 0.4. The range of
the forecast values is widened and the average
forecast value is lower than the first scenario.
The observed vector is again a random drawn
from the total set of bins and we select 1% of
bins to have earthquakes. As mentioned earli-
er, the shape of the EFES will depend on the
forecast and the set of observed earthquakes,
as so will the distribution of permuted EFES

values. The distribution has moved to the
right. However, whilst the ES is higher, it
remains not significant.

The third scenario is slightly more realistic.
Here we first selected 1% of the total bins and
assigned these bins an earthquake. Then we
simulated the forecast such that bins with an
observed earthquake were assigned a value
between 0.2 and 1 and bins without observed
earthquakes were assigned a value between 0
and 0.8. Therefore, on average, the bins with
an observed earthquake have a higher forecast
value than those without. This represents the
so-called messy perfect forecast. The ES reach-
es its maximum value early and the bins with
earthquakes are gathered toward the top of our
ranked list of earthquakes. The permutation
test shows the ES is significant.

The fourth scenario is similar to the third.
However, we forced a higher agreement
between the forecast and the observations.
Bins with an observed earthquake were
assigned a value between 0.6 and 1 and bins
without an earthquake were assigned a value
of between 0 and 0.4. The ES is larger than that
obtained with the third scenario and this
result is significant.

The first four scenarios are highly unlikely
to represent real submitted forecasts but they
serve to illustrate some important points. If
you submit a forecast similar to the first sce-
nario, the observations will of course fall in
bins with high forecast values. However,
because all bins have a high-predicted value, it

is a nonsensical forecast and the EFES will not
be significant. If it is possible to submit the
perfect forecast (or the perfect forecast in
amongst a little noise), the EFES will be signif-
icant (and higher for the more accurate fore-
cast) as witnessed with the third and fourth
scenarios. 

We have also simulated some scenarios that
are more likely to represent submitted fore-
casts, where there is spatial clustering in the
forecasts (Figure 2E and F) and spatial cluster-
ing in both the forecast and the observations
(Figure 2G and H). 

In the fifth and sixth scenarios, we first cre-
ated the observations vector, by randomly sam-
pling 1% of the total number of bins. We ran-
domly assigned each bin a forecast between 0
and 1. Then, we divided this forecast value by
the distance of the bin to the closest observa-
tion, in accordance with a predefined smooth-
ing value. In the fifth scenario, we used a mod-
erate amount of smoothing, and in the sixth
scenario we used a harsh degree of smoothing.
Therefore, in Figure 2E we can see moderate
clusters within the forecast, and in Figure 2F
we can see tight clusters within the forecast.
The enrichment score profile for these scenar-
ios shows that the tighter the cluster, the bet-
ter the ES. In other words, the better the dis-
tinction between forecasts of bins with earth-
quakes and those bins without earthquakes,
the better the ES. However, even with moder-
ate clusters in our data we can still obtain sig-
nificant ESs. 

Article

Figure 1. (A) Forecast using the MARFS model (12) for M5 or greater earthquakes for
2010. (B) The locations of observed earthquakes during the forecast period. (C)
Enrichment score profile for the forecast.
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The final two scenarios are identical to the
preceding two. However, we also forced spatial
clustering within the observations. This is a
likely situation in the CSEP Japan experiment,
where the catalog is not declustered before
comparing it to the submitted forecasts. We
see the same results as those portrayed in
Figure 2E and F: the tighter the clusters
around the observed clusters, the better the
EFES.

The results we present in each of the figures
above are obtained from a single simulation. It
may be argued that we obtained fortuitous
simulations that highlighted the capabilities of
the EFES metric. We, therefore, repeated each
of the simulations 100 times and counted the
number of times the EFES is significant. The
results for the Japan simulations are shown in
the middle column of Table 1, and for identical
scenarios for the California area in the middle
column of Table 2. A comparison between the
results for the California and Japan scenarios
shows that the number of bins has not affected
the results. 

The results for 0.5% of bins randomly
assigned an earthquake (left column) and 5%
of bins randomly assigned an earthquake
(right column) are shown in Tables 1 and 2.
We can see that the results are stable. The first
two scenarios are only significant on an aver-
age 5% of the time; a result which is consistent
with chance. Also, the other scenarios are sig-
nificant almost 100% of the time; a result that
gives us confidence in the stability of the
method. The results do not depend on the
number of bins or the proportion of bins with
earthquakes. 

Discussion and Conclusions

The initial simulation runs show promising
performances. We averaged the run time of the
simulation analysis to calculate the computa-
tion time required to calculate an EFES and its
significance with 1000 permutations. On aver-
age, it takes a little over one minute. We used
a Windows desktop machine with Intel Core i5
CPU (3.20 gigahertz) and 4 gigabytes of RAM.

It is possible to compare two forecasts in the
spatial domain simply by comparing their
EFESs, assuming they forecast and are evalu-
ated on the same period and area. The forecast
with the higher EFES is preferable. It is possi-
ble to ascertain if the difference between the
EFESs of two forecasts is significant by permu-
tation testing. To perform this permutation
test we would not permute the earthquakes at
all. Rather, we would first calculate the differ-
ence between the two scores. Then, for each
bin, we would randomly reassign the real fore-
cast value of model one, to either of model one
or model two. We then obtain a permuted vec-

tor for model one (and model two) which con-
tains some forecast values from the original
model one and some forecast values from the
original model two. We then calculate the EFES
for each permuted model and the difference
between the scores. We repeat this process to
get a distribution of the differences and we
look to see how likely we are to get our original
difference by chance. 

It is possible to ascertain if the difference
between the EFESs of two forecasts is signifi-
cant using the permutation technique
described above. However, there have been a

large number of models submitted to the CSEP
initiative. The probability of finding a signifi-
cant result due to chance increases as we
increase the number of hypotheses that we
test simultaneously. Therefore, to test all pos-
sible pairwise comparisons would require an
appropriate adjustment such as Bonferonni
correction of the statistical significance level
to deal with the issue of multiple comparisons.
Bonferonni correction corrects the significant
level for each individual test by the number of
tests so that the probability of observing at
least one significant result by chance is unaf-

Article

Figure 2. (A)-(H) Simulated forecasts and their respective enrichment score profiles for
each of the eight scenarios described in the text.
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fected by the number of tests performed.
The situation which came to light as a result

of the analysis with real data, when more than
one earthquake was observed in each bin, mer-
its discussion. We consider our gene set as our
set of bins where earthquakes occur. This
means we just consider if the earthquakes
occur in red (high probability bins) without
considering how many earthquakes occurred
in each bin. In fact, the formulae detailed
above do not include any reference to the num-
ber of earthquakes that occurred in a bin. In
this regard, the EFES is more similar to the
ROC-like tests in CSEP than to the likelihood
tests (which do in fact consider the actual
number of observed earthquakes in a bin). In
fact, the ROC also involves ranking the fore-
cast values. The ROC curves then plot the true
positive rate versus the false positive rate as
an artificial alarm rate is increased.

In Nanjo et al.,14 the authors suggest a tech-
nique for modifying the ROC calculation such
that it is suitable for comparing forecasts with
multiple earthquakes observed in a single bin.
The authors consider each earthquake sepa-
rately and then sum the contingency table val-
ues. However, it is impossible to do the same
with the presented technique. If we were to
consider each earthquake as a separate set, it
is difficult to combine them in a sensible man-
ner so that the absolute value of the resultant
score is between zero and one, and is repre-

sentative of the original forecast. 
However, there is a simple solution if we

consider bins where earthquakes occurred and
calculate the root mean square error (RMSE)
between the predicted and observed numbers
of these bins. So, assume we have a simple
experiment where six earthquakes occurred
(five earthquakes in one bin, and one earth-
quake in another bin) and two forecasts,
which are identical except for the forecasts for
the bins where the earthquakes occurred. Let
forecast A predict (0.9,0.1); forecast B predict
(0.1,0.9) and the observed number of earth-
quakes be (5,1). In this scenario, both forecast
A and forecast B would receive the same EFES.
However, the RMSE of A is less than B, so we
would assume that A is the better forecast.

In a similar sense, it should be obvious to
the reader, that if we simply double the predic-
tions for each cell and calculate the EFES, the
EFES will remain the same, because the rank-
ing of the forecast bins will be identical. More
simply, the EFES does not consider the number
of earthquakes of the entire forecast.
Therefore, it is necessary to employ the EFES
with a test that measures the consistency of
the forecast rate of all bins (not only consider-
ing bins where earthquakes occurred as
described in the previous paragraph) and the
corresponding observed number of earth-
quakes. The N-test2,3 already incorporated into
the CSEP suite of tests is ideal for this pur-

pose.
We also do not consider the forecast for each

magnitude bin within each geographical cell,
although the technique to calculate the score
would not change if this information was
included. We simply sum over all magnitude
ranges for the cell and use this single number
as the cell’s prediction. Therefore, for the type
of implementation we describe here, it is also
necessary to use a test that measures the dif-
ference between the forecast magnitude distri-
bution and the observed magnitude distribu-
tion. We recommend the M-test for this pur-
pose.3 In short, the EFES cannot be used to
rank forecasts on its own, but must be com-
bined with other tests.

The EFES is an easily understandable tech-
nique to assess if earthquakes occur in bins
with higher forecast values than in bins with
lower forecast values. The EFES is most simi-
lar to the current S-test employed in the CSEP
suite of evaluation metrics; however, it does
not require the specification of a distribution
(usually the Poisson) for the probability of the
observation in each bin. We are currently
working in collaboration with the Japanese
CSEP environment to prepare the metric ready
for testing of real forecast models. We hope to
publish the results of the EFES metric (com-
pared to the currently used evaluation metrics)
in the future. It is important to constantly
reassess the evaluation metrics in use at the
CSEP to ensure the most accurate evaluation
of the submitted forecasts.
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