Metastatic pleomorphic sarcoma to left atrium

Ammar H. Hawasli,1 Rachael Cayce,2 Trung Luong,6 Evelyn Taiwo,1 Michael N. Feliciano3, Sharon C. Reimold,2,4 John M. DiMaio,5 Barbara B. Haley1,2

Departments of 1Hematology-Oncology, 2Internal Medicine, 3Pathology, 4Cardiology, and 5Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA

Abstract

Although several thousand patients are diagnosed with sarcoma annually in the United States, metastases to the heart are very uncommon. In this case report, an overall low frequency cancer presents masquerading with common cardiac symptomology. This case illustrates the importance for detailed diagnostic cardiac evaluations and heightened suspicion by physicians to consider metastatic disease to the heart in cancer patients with cardiovascular complications. Also discussed is a review of surgical and chemotherapeutic options for this problem.

Introduction

A 53-year-old Caucasian gentleman presented with progressive lower back pain, urinary and bowel incontinence, and lower extremity swelling over a one month period. He had been diagnosed six months prior at an outside institution with a high-grade pleomorphic sarcoma with focal myxoid and epithelioid elements of the duodenum. Small bowel resection was performed because of bowel obstruction. Perioperatively, the patient suffered a myocardial infarction (MI) due to focal narrowing of the left anterior descending artery and a drug-eluting stent was placed during cardiac catheterization. Post-operative transthoracic echocardiogram (TTE) was interpreted as mild mitral valve thickening, with flail chordae tendineae and an estimated ejection fraction of 35-40%. After discharge, the patient was lost to follow-up.

Case report

On presentation to our facility, physical examination revealed normal lower extremity strength, focal tenderness over the sacrum, pitting edema in the lower extremities and a murmur of mitral regurgitation with basilar crackles and dullness. Computed tomography (CT) showed a wedge-shaped splenic infarct and magnetic resonance imaging (MRI) of the spine demonstrated osseous metastatic disease involving the vertebral bodies, with epidural and neuroforaminal tumor extension in the sacrum. A TTE was performed in anticipation of chemotherapy with adriamycin and revealed a large vegetation attached to the anterior leaflet of the mitral valve with prolapse into the left atrium and ventricle (Figure 1A, arrow) and hypoechoic regions within the cardiac tissue (Figure 1A, arrowhead). The patient was taken to the operating room to remove the vegetation, biopsy the hypochoic mass and replace the mitral valve. A 9 cm vegetation was excised from the anterior mitral valve leaflet (Figure 1B, left and middle). Intraoperatively, the patient was noted to have diffuse disease throughout the atrial septum and mitral valve (Figure 1B, right) and the procedure was terminated. Post-operative cardiac MRI showed a lobulated cardiac mass infiltrating the atrial septum, the posterior aortic wall and the posterior aspect of the anterior mitral valve annulus. In the axial plane, the mass measured at least 5.3 x 2.2 cm and extended to the superior portion of the left atrium near the entry of the right superior pulmonary vein (Figure 1C; mass indicated with arrowheads). Histology of the atrial mass revealed a high-grade pleomorphic sarcoma, metastatic to heart. Low power frozen sections of the atrial wall showed hypercellularity (Figure 2A). Medium and high power frozen (Figure 2B and C) and permanent (Figure 2D) sections showed tumor giant cells (indicated with arrowheads) among spindled and epithelioid
tumor cells. The atrial mass was immunohistochemically positive for vimentin, confirming mesenchymal differentiation (Figure 2E). Immunohistochemical stains for other markers, including CD117, AE1/AE3, desmin, myogenin, caldesmon, S100, HMB-34, calretinin, CD31 and CD34 were negative (Figure 2F).

A diagnosis of metastatic cardiac sarcoma was established and treatment with gemcitabine and docetaxel was initiated. Adriamycin-based therapy was not considered secondary to the patient’s reduced cardiac function (37% ejection fraction). Five weeks after initiating chemotherapy, the patient was admitted for worsening lower extremity edema but denied shortness of breath, orthopnea, paroxysmal nocturnal dyspnea, chest pains, palpitations, weight gain, or symptoms of transient ischemic attacks. Electrocardiogram revealed atrial flutter at 119 beats per minute with 2:1 block and the old anterolateral infarct. The patient declined cardioversion and was treated with amiodarone. At the time of preparation of this report, the patient was tolerating palliative gemcitabine and docetaxel chemotherapy.

Discussion

Soft-tissue sarcomas are a diverse mix of cancers with an incidence of 10,390 new cases diagnosed annually in the United States. Despite aggressive treatment with surgery, radiation and chemotherapy, outcomes remain suboptimal as 3,680 (35%) soft-tissue sarcoma patients die annually. Death secondary to metastases is common and sites of metastases vary depending on the type of soft-tissue sarcoma with most types showing a predilection for visceral organs. Most metastases occur at initial presentation. A high degree of suspicion for cardiac involvement by sarcoma may have hastened a correct diagnosis.

Conclusions

Management of metastatic sarcoma to the heart remains a difficult task. Some reports discuss surgical resection of cardiac metastatic lesions with variable success, while others report the use of cardiac transplantation. In this case, surgical excision was attempted, but the extensive infiltrating nature of the tumor prohibited complete debridement leaving systemic therapy as the only viable option. There are several generally accepted systemic therapies for metastatic sarcoma to patients including doxorubicin as a single agent or in combination with other drugs. The most widely employed combination chemotherapy regimens are doxorubicin/dacarbazine, doxorubicin/ifosfamide/mesna, mesna/doxorubicin/ifosfamide/dacarbazine, ifosfamide/epi-

Figure 2. Histology of atrial mass.

References


[page 2] [Rare Tumors 2009; 1:e1]


