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Abstract

Since the 1970s, archaeologists have
increasingly depended on archaeometric
rather than strictly stylistic data to explore
questions of ceramic provenance and technol-
ogy, and, by extension, trade, exchange, social
networks and even identity. It is accepted as
obvious by some archaeometrists and statisti-
cians that the results of the analyses of compo-
sitional data may be dependent on the format
of the data used, on the data exploration
method employed and, in the case of multivari-
ate analyses, even on the number of elements
considered. However, this is rarely articulated
clearly in publications, making it less obvious
to archaeologists. In this short paper, we re-
examine compositional data from a collection
of bricks, tiles and ceramics from Hill Hall,
near Epping in Essex, England, as a case study
to show how the method of data exploration
used and the number of elements considered
in multivariate analyses of compositional data
can affect the sorting of ceramic samples into
chemical groups. We compare bivariate data
splitting (BDS) with principal component
analysis (PCA) and centered log ratio-principal
component analysis (CLR-PCA) of different
unstandardized data formats [original concen-
tration data and logarithmically transformed
(i.e. log10 data)], using different numbers of
elements. We confirm that PCA, in its various
forms, is quite sensitive to the numbers and
types of elements used in data analysis.

Introduction

Archaeologists have long acknowledged the
importance of understanding the raw materi-

als that constitute the ceramic artifacts they
find in the archaeological record. Knowing
whether such materials were, or were not,
local to the site where ceramics were found
allows them to address questions of regional
interactions. Knowing whether raw materials
were mixed in different ways allows them to
pursue questions related to technological tra-
ditions, communities of practice and, ultimate-
ly, of identity. Thus, archaeologists are consis-
tently interested in the chemical groups that
compositional analyses of ceramics suggest.
Yet, it is not always clear that the definition of
such chemical groups may be dependent on
the way compositional data are transformed
(Michelaki and Hancock, 2011), on the partic-
ular data exploration method selected (Baxter
and Freestone, 2006) and even on the specific
elements selected for consideration (Baxter
and Jackson, 2001). Although some
archaeometrists and statisticians consider
such dependence obvious, the issue is rarely
addressed clearly in the literature.

The purpose of our paper is to evaluate the
influence that different data exploration meth-
ods [bivariate data splitting (BDS), principal
component analysis (PCA) and centred log
ratio-principal component analysis (CLR-
PCA)] and varying numbers of chemical ele-
ments (n=29, 25, 17, 10, 6 and 4) will have on
the same set of ceramic chemical data. As a
case study, we have chosen 79 samples of tiles
and bricks from Hill Hall, near Epping in Essex,
England, that one of us (M.J.H.) analyzed pre-
viously, using inductively coupled plasma-
atomic emission spectrometry (ICP-AES)
(Hughes, 2009).

Materials and Methods

In a recent paper, Hughes (2009) published
the results of his chemical analysis of 79 sam-
ples of ceramic building materials from Hill
Hall, a house built originally by Sir Thomas
Smith during the reign of Elizabeth I.
Specifically, he examined 7 types of medieval
brick (TB1, MB1-9, MB10, Med B1, Med B2,
Med B3 and Med B4), one type of medieval roof
tile (RT4) and one type of medieval floor tile
(FT6). Moreover, he examined a set of post-
medieval materials: three types of floor tiles
(FT10-13, FT1 and FT2), one type of roof tile
(RT3), one type of stove tile (glazed terracotta)
and one type of terracotta, along with brick
samples from the Chipping Ongar church.

The aim was to understand from where the
bricks and tiles used in the construction of Hill
Hall came. To achieve this goal, bivariate scat-
ter plots of chemical elements were used to
confirm that there were no sample outliers and
that the data formed an analytically coherent
set. As expected, some strong element correla-

tions were found, as is common in the analysis
of ceramics. For example, strong correlations
were found between lanthanum (La), cerium
(Ce) and neodimium (Nd) [rare earth ele-
ments (REEs)] and aluminium (Al) and titani-
um (Ti) (major elements of clay minerals). To
explore the structure of the chemical data,
while also correcting for temper dilution, the
data were then submitted to a CLR-PCA
(Aitchison, 1986; Aitchison et al., 2002; Leese
et al., 1989; Pollard et al., 2006). Seventeen ele-
ments that past experience had proven to be
reliably diagnostic were included in the analy-
sis. The results indicated the presence of two
distinct chemical groups, separating 11 sam-
ples of brick and tile (small group) from 68
other ceramic building materials samples
(large group). To check whether this separa-
tion of the 11 samples from the remaining 68
would persist despite variation in data explo-

Correspondence: Kostalena Michelaki, School of
Human Evolution and Social Change, Arizona
State University, 900 S. Cady Mall, Tempe,
Arizona, 85287-2402, USA.
Tel. +1.480.965.6170 - Fax: +1.480.965.7671
E-mail: kmichela@asu.edu

Citation: Michelaki M, Hughes M, Hancock RGV,
2013. On establishing ceramic chemical groups:
exploring the influence of data analysis methods
and the role of the elements chosen in analysis.
In: RH Tykot (ed.) Proceedings of the 38th
International Symposium on Archeometry – May
10th-14th 2010, Tampa, Florida. Open Journal of
Archaeometry 1:e1.

Key words: ceramic compositional data, principal
component analysis, bivariate data splitting,
medieval and post-medieval England.

Acknowledgments: this paper owes a lot to the
Fitch Laboratory at the British School at Athens
and the School of Human Evolution and Social
Change at Arizona State University for the sup-
port they provided to KM. Gary Schwartz read
multiple drafts and helped us better shape and
articulate our argument. The paper would not
exist at all without RGVH’s ideas and MH’s origi-
nal work.

Contributions: the authors contributed equally.

Conflict of interests: the authors declare no
potential conflict of interests.

Presented at the 38th International Symposium
on Archaeometry – May 10th-14th 2010, Tampa,
Florida.

This work is licensed under a Creative Commons
Attribution 3.0 License (by-nc 3.0).

©Copyright K. Michelaki et al., 2013
Licensee PAGEPress, Italy
Open Journal of Archaeometry 2013; 1:e1
doi:10.4081/arc.2013.e1



[page 2] [Open Journal of Archaeometry 2013; volume 1:e1]

ration methods, we initially assessed the data
(in original concentration format) using BDS.
Then we submitted the data to PCA (using
both original concentration data and logarith-
mically transformed data) and to CLR-PCA,
using progressively fewer elements, by elimi-
nating elements of similar chemistry so that
each periodic group was represented by
increasingly fewer elements.

Results

Bivariate data splitting
Before the examination of bivariate plots

commenced, the means, standard deviations,
and coefficients of variation (CVs) of all meas-
ured element concentrations were calculated
from each element. This provides a straightfor-
ward way to establish the relative heterogene-
ity of the element distributions.

The CVs varied quite radically: 
<20%        Al, Cr, K, La, Ti
20% - 25% Fe, Na, Sc, Zn, Zr, Ce, Nd
25% - 30% Mn, Ni, Li, V
30% - 40% Mg, Ni, Y, Sm, Eu, Dy, Yb
>40%        P, Ba, Ca, Co, Sr, Pb
These broad distributions suggested that

the samples consisted of relatively coarse
wares, some with Ca-rich tempering, or that
the different building material types may have
been made in different places. To add to these
possibilities, the use of sediments from chem-
ically different local clay pits, or even from
chemically different sediment horizons, at the
same place of production, might also have con-
tributed to an increase in the CVs. No matter
what the reason, it was clear from the exami-
nation of concentrations of individual ele-
ments that sufficient variation in the data
existed to identify distinct chemical groups.

Next, we addressed whether data explo-
ration methods different from those originally
used by Hughes (2009) would produce the
same data sorting. First, a BDS approach was
applied. This is often considered a time con-
suming process and is rarely favoured in the
presentation of the results of compositional
data analysis. Yet, bivariate plots illustrate the
basic geochemical relationships within the
data set and can, thus, provide chemical clari-
ty. Calcium (Ca) and strontium (Sr) are posi-
tively correlated (Figure 1a), implying that the
source of lime in selected samples, especially
in the tin-glazed floor tiles (FT2), was from
limestone associated with sea shells. Lead
(Pb) did not correlate well with other ele-
ments, and highly elevated Pb levels were
found only in glazed floor tiles. Barium (Ba)
also did not correlate well with other elements,
with elevated levels appearing in different
sorts of unglazed floor tiles. Since zirconium

(Zr) was positively correlated with other sili-
cate forming elements, the diluant of the
ceramics (apart from limestone) is probably
not zircon-rich quartz, but must be either sili-
ca-rich silicate mineral(s) or pure quartz.
However, in the preparation of samples for
ICP-AES an acid dissolution (hydrofluoric/per-
chloric acids) procedure was followed, which
may not have completely dissolved all zirconia
present. Thus, any interpretation of Zr data
should be regarded with some caution.

All other reported elements correlated posi-
tively, especially the REEs (e.g. Figure 1b), as
previously reported (Hughes, 2009), but in
some cases the correlations were lumpy, espe-
cially in the K2O and Na2O plots with other ele-
ments (e.g. Figure 1c,d). This finding allowed
the data set to be split into three groups: Group
1 (30 samples; Table 1) with higher elemental
concentrations; Group 2 (29 samples; Table 1)

with lower elemental concentrations; and
Group 3 (20 samples; Table 1) with samples
that had relatively higher K2O and Na2O con-
tents than was deemed to be normal compared
to their closer chemical neighbour, Group 2.
From Figure 1c,d, it appears that Group 1 and
Group 2 might be two distinct groups, or may
be the high and low ends of a single, highly
variable chemical group. This is why they are
marked in all figures as different shades of the
same symbol (x). For the 3 possible chemical
groups, means and standard deviations are
presented in Table 1. In this table, the ele-
ments are ordered alphabetically by major and
minor element oxide, and alphabetically by
trace element, with the REEs in order of atom-
ic number. Also, the elements with the most
diverse scatter are listed at the bottom of the
table, since these were not included in the cal-
culations of inter-group ratios (see below).

Article

Table 1. Summary statistics for the three chemical groups, including group ratios per-
formed on group means.

Elements G1 G2 G3 G1/G2 G1/G3 G2/G3
30 samples 29 samples 20 samples

Al2O3% 16.2±1.4 12.5±1.8 11.7±1.6 1.3 1.4 1.1
Fe2O3% 7.7±0.6 5.9±1.4 5.8±0.9 1.3 1.3 1.0
MgO% 2.1±0.3 1.6±0.5 0.9±0.2 1.3 2.2 1.7
Na2O% 0.47±0.05 0.36±0.09 0.55±0.07 1.3 0.9 0.7
K2O% 3.38±0.22 2.43±0.50 2.78±0.30 1.4 1.2 0.9
TiO2% 0.95±0.09 0.70±0.11 0.85±0.10 1.3 1.1 0.8
Co 35±14 24±21 16±4 1.4 2.2 1.6
Cr 138±14 104±17 102±19 1.3 1.4 1.0
Cu 29±5 28±8 19±4 1.0 1.5 1.5
Li 82±14 61±12 54±18 1.3 1.5 1.1
Ni 63±7 46±10 26±5 1.4 2.4 1.8
Sc 18±2 14±2 12±2 1.3 1.6 1.2
V 156±18 115±32 100±21 1.4 1.6 1.1
Y 32±5 24±5 15±4 1.3 2.1 1.6
Zn 93±8 76±19 64±8 1.2 1.4 1.2
Zr 100±20 81±12 64±10 1.2 1.6 1.3
La 46±5 35±5 33±4 1.3 1.4 1.1
Ce 96±14 69±10 70±8 1.4 1.4 1.0
Nd 49±5 37±5 33±4 1.3 1.5 1.1
Sm 8.2±1.6 5.3±1.2 4.8±1.0 1.6 1.7 1.1
Eu 1.80±0.29 1.22±0.23 0.95±0.20 1.5 1.9 1.3
Dy 5.4±0.9 3.9±0.8 2.6±0.7 1.4 2.1 1.5
Yb 2.8±0.4 2.0±0.4 1.3±0.3 1.4 2.1 1.5

Mean±SD 1.3±0.1 1.6±0.4 1.2±0.3
CaO% 0.69±0.24 6.00±8.82 0.55±0.74 0.1 1.3 10.9
MnO% 0.038±0.008 0.032±0.009 0.039±0.013 1.2 1.0 0.8
P2O5% 0.11±0.02 0.13±0.08 0.09±0.03 0.8 1.3 1.5
Ba 540±290 330±60 440±30 1.6 1.2 0.8
Pb 68±76 182±240 23±10 0.4 2.9 7.8
Sr 110±10 170±130 93±10 0.6 1.2 1.9
G1, group 1; G2, group 2; G3, group 3; SD, standard deviation.
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Table 2 shows that Group 3 samples include
all the samples from the small group of Hughes
(2009) plus four samples from MB1-9; three
samples from TB1; and one sample from MB3.

Even though bivariate plots (see K2O vs
MgO; Figure 1d) suggest separations among
three, or perhaps between two, chemical
groups, the final step in the BDS approach was
to identify the elements that showed the most
pronounced differences [e.g. nickel (Ni), lithi-
um (Li), potassium oxide (K2O) and sodium
oxide (Na2O)] and to plot their inter-elemental
ratios (e.g. Figure 1e,f). These showed clearly
that there were only two distinct, non-overlap-
ping chemical groups: 59 samples (30 plus 29)
in the first group, and 20 samples in the sec-
ond. By uniting the original first and second
groups of samples, these figures also con-
firmed that the two groups were part of an
associated continuum of data. This is con-
firmed by the group ratios presented at the
right hand side of Table 1, after the summary

elemental concentration data for the three
groups, where mean concentration ratios are
much closer between Groups 1 and 2 (1.3±0.1)
than between Groups 1 and 3 (1.6±0.4) and
between Groups 2 and 3 (1.2±0.3).

Principal component analysis with varying
numbers of elements

To explore why Hughes (2009) found 11 dis-
tinctive samples while we had now found 20
using BDS, PCA was performed on both the
original concentration data and on logarithmic
data, using progressively fewer chemical ele-
ments (see bottom of Table 3 for the elements
included in each PCA). The rationale was to
progressively eliminate elements of similar
chemistry, so that each periodic group was rep-
resented by increasingly fewer elements.

Although they are somewhat subjective, the
resulting PC plots clearly show a progression
that is element-choice dependent (Table 3),
and hence may explain the apparent discrep-

ancy with the earlier analysis by Hughes
(2009).

Figure 2a (29 elements; PC1 vs PC2) sorts
the post-medieval polychrome tin-glazed floor
tiles (FT2) from the other samples, mainly on
the basis of their high CaO content. In the
original publication (Hughes, 2009), based on
comparative analysis, it was concluded that
these samples were products of the Low
Countries and unlike any other ceramic mate-
rial analyzed from Hill Hall. Moreover, in the
bottom left hand corner of the plot lie many of
the samples that we defined as Group 3, based
on our BDS analysis. Without that a priori clas-
sification of these samples as Group 3 in the
PCA, they would not appear as a clearly distin-
guishable cluster of samples, but rather as
lying along one end of the spectrum of varia-
tion in PC1 scores. Figure 2b (10 elements,
PC1 vs PC2) has twelve, or more, samples from
Group 3 in the upper left quadrant that are
clearly separated from the main group. It is

Technology & Provenance - Ceramics

Figure 1. Scattergram of a) Sr ppm vs CaO%; b) La ppm vs Ce ppm; c) Na2O% vs Y ppm; d) MgO% vs K2O%; e) Ni ppm/Na2O% vs Li
ppm/K2O%; and f ) Ni ppm/Na2O% vs MgO%/K2O%.
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only when one whittles down to less than ten
elements (e.g. 4 elements, PC1 vs PC2; Figure
2f) that the 20 Group 3 samples are clearly sep-
arated from the rest.

Centered log ratio-principal component
analysis

To confirm the analyses of Hughes (2009),
centered log ratio-principal component analysis
(CLR-PCA) was employed (Aitchison, 1986;
Aitchison et al., 2002; Leese et al., 1989; Pollard
et al., 2006). In CLR, each elemental concentra-
tion was first converted to the natural logarithm
of the ratio of the specific elemental concentra-
tion to the geometric mean of all elemental con-
centrations in each sample. The new data set
was then submitted to a PCA. In all the cases we
considered enough principal components to
achieve a cumulative variance of ≥90%. The
summary results are presented in Table 3.
Figure 2d shows that when all 29 elements are
used in CLR-PCA, eleven Group 3 samples at the
bottom right quadrant of the graph clearly sepa-
rate from the rest of the samples, as do also the
tin-glazed floor tiles (FT2). Figure 2e shows that
11 Group 3 samples in the lower right quadrant
are clearly separated, and if one knew that the
bulk of the other samples were tightly clustered
on the centre-left, then more Group 3 samples
are obvious in the upper right of the plot. As
with PCA, it is only when the numbers of includ-
ed elements are well below ten that the group
separation is clear, as is displayed in Figure 2f,
the 4 element CLR-PCA plot.

Discussion

In Hughes’ original publication (2009) of
the chemical composition of 79 brick and tile
samples from Hill Hall, two distinct groups
were defined: a large group with 68 samples
and a small group with 11 samples. In this
study, we found that membership to these
groups varied based on the data exploration
method used and on the number of chemical
elements included in the analysis. Specifically,
in our study, the membership of the small
group varied from 11 samples, when CLR-PCA
was used with 29 and 25 elements, to as many
as 20 samples when PCA or CLR-PCA were
used with 6 or 4 elements. Moreover, it was the
careful examination of bivariate plots of chem-
ical elements and inter-elemental ratios that
first suggested the presence of a distinct small
group with as many as 20 sample members.
The consequences of such group membership
variability can be of great importance to
archaeologists, as they try to assess how often
certain raw materials sources were used, how
common foreign materials were, or how widely
used certain ceramic paste recipes were, for
example. In our specific case study, the

enlargement of the number of samples with
Group 3 chemistry (i.e. 20 rather than 11 sam-
ples) had a most interesting effect: now many
medieval bricks (all of TB1 and most of MB1-9)
and all of the post-medieval bricks (MB10, Med

B3 and Med B4) are displaying the same Group
3 chemistry. One medieval floor tile (FT6) sam-
ple continues to be part of Group 3, as initially
suggested by Hughes (2009).

Article

Table 3. Principal component analysis (original data or log10 data) and centered log
ratio-principal component analysis (original data) sample assignments.

Ceramic materials
FT6 Med B3 Med B4 MB1-9 MB10 TB1 Med B2 Total BestPC plot

PCA

29 elements* 1 0 1 2 4 8 0 ≤16 PC1-PC2
25 elements° 1 0 1 2 4 8 0 16 PC1-PC2
17 elements# 1 0 1 1 4 5 0 12 PC1-PC2
10 elements§ 1 0 1 4 4 9 0 19 PC1-PC2
6 elements^ 1 1 1 4 4 9 0 20 PC1-PC2
4 elements$ 1 1 1 4 4 9 0 20 PC1-PC2
CLR-PCA

29 elements* 1 0 0 1 4 5 0 11 PC1-PC2
25 elements° 1 0 0 1 4 5 0 11 PC1-PC2
17 elements# 1 0 0 1 4 8 0 14 PC1-PC2
10 elements§ 1 0 0 1 4 5 0 11 PC1-PC2
10 elements§ 1 0 1 1 4 8 0 15 PC1-PC3
6 elements^ 1 1 1 4 4 9 0 20 PC1-PC2
4 elements$ 1 1 1 4 4 9 0 20 PC1-PC2
FT6, type of medieval floor tile; Med B3, Med B4, MB1-9, MB10, TB1, and Med B2, types of medieval brick; PC, principal component; PCA, prin-
cipal component analysis; PC1, principal component one; PC2, principal component two; CLR-PCA, centered log ratio-principal component
analysis; PC3, principal component three. *Al, Fe, Mg, Na, K, Ti, Co, Cr, Cu, Li, Ni, Sc, V, Y, Zn, Zr, La, Ce, Nd, Sm, Eu, Dy, Yb, Ca, Mn, P, Ba, Pb, Sr;
°Al, Fe, Mg, Na, K, Ti, Co, Cr, Cu, Li, Ni, Sc, V, Y, Zn, Zr, La, Ce, Nd, Sm, Eu, Dy, Yb, Mn, P; #Al, Fe, Na, K, Ti, Mg, Co, Cr, Li, Ni, Sc, V, Y, Zn, La, Ce,
Nd; §Al, Mg, Na, K, Ti, Ni, Li, Cu, Y, La, Ce; ^Mg, Na, K, Ni, Li, Y; $Mg, Na, K, Ni.

Table 2. Groupings found by this work and those found in Hughes (2009) (large and
small).

Samples This work - BDS Hughes (2009) - PCA
G1 G2 G3 Large Small

FT6 4 - 1 4 1
Med B1 - 6 - 6 -
Med B2 - 6 - 6 -
MB1-9 1 - 4 5 -
TB-1 - - 9 3 6
RT4 6 - - 6 -
FT10-13 6 - - 6 -
RT3 3 - - 3 -
Ongar church - 6 - 6 -
Terracotta 5 1 - 6 -
Glazed terracotta 5 - - 5 -
FT1 - 3 - 3 -
FT2 - 7 - 7 -
Med B3 - - 1 1 -
Med B4 - - 1 1
MB10 - - 4 1 3
Total 30 29 20 68 11
BDS, bivariate data splitting; PCA, principal component analysis; G1, group 1; G2, group 2; G3, group 3; FT6, type of medieval floor tile; Med
B1, Med B2, MB1-9, and TB-1, types of medieval brick; RT4, type of medieval roof tile; FT10-13, FT1 and FT2, types of floor tiles; RT3, type of
roof tile; Med B3, Med B4, and MB10, types of medieval brick.



[Open Journal of Archaeometry 2013; volume 1:e1] [page 5]

Conclusions

Overall, in this study, the order of analysis
implemented to render clarity in the chemical
sorting of the samples analyzed was: inter-ele-
ment concentration ratio plots; PCA; CLR-PCA;
and bivariate element concentration plots. The
finding that the method of data exploration
and the number of elements included in analy-
sis can influence chemical group membership
and, thus, have an impact on archaeological
interpretations suggests that we must apply as
much attention to assessing and sorting ana-
lytical data as we do to creating data sets.
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