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Abstract 

This paper is devoted to study the effects of
radiation pressure together with tesseral and
zonal harmonics on the high altitude artificial
satellites orbits. The equations of motion were
regularized by using the KS variables and the
problem was solved numerically using the
fourth order of Runge Kutta method. A numer-
ical testing was performed on Lageos-1 satel-
lite in order to analyze its orbital changes due
to effects of both radiation pressure and
Earth's oblateness.

Introduction

Several models have been constructed in
order to describe Earth’s gravitational field.
Both of them aim at achieving a more accurate
description of the Earth's spherical harmonics.
For such complex force models, analytical solu-
tions depicting the satellite orbital motion are
more complicated. These solutions appear as a
manifold of large domain of initial conditions
and parameters.       

On the other hand, numerical integrations
are widely used methods providing a very accu-
rate ephemeris of a satellite orbital determina-
tion. These methods ensure a reasonable accu-
racy comparable with that of analytical solu-
tions. Therefore, the description of the satel-
lite motion in the Earth’s gravitational field by
an analytical theory ensuring comparable
accuracy with that of numerical integration is
seemed to be a reasonable task.

Stern1,2 and Cook et al.3 had generated ana-
lytical solutions for near Earth low eccentricity
orbits. Kampos4 carried out an extension of the
work reported by Kalil5 with the same atmos-
phere model. King-Hele and Walker6 extended
the solutions to high eccentricity orbits. Engels
and Junkins7 and Jezewski8 as well evolved
analytical solutions with J2 for short-term
orbit. However, the numerical integration
methods provide more accurate ephemeris of a
satellite with respect to any type of perturbing
forces.9-11

It is well known that the solutions of the

classical Newtonian equations of motion are
not suitable for long-term integration. Many
transformations have emerged in the litera-
ture in the recent past to stabilize the equa-
tions of motions either to reduce the accumu-
lation of local numerical errors or allowing the
use of larger integration step sizes, in the
transformed space or both. Examples of such
transformations include the use of a new inde-
pendent variable, time transformation to
orbital parameter space, which tends to decou-
ple fast and slow variables, and the use of inte-
grals as control terms. One such transforma-
tion, known as the KS transformation, is due to
Kustaanheimo and Stiefel,12 who regularized
the nonlinear Kepler motion and reduced it to
linear differential equations of a harmonic
oscillator of constant frequency. 

Stiefel and Scheifele13 further developed the
application of the KS transformation to prob-
lems of perturbed motion, producing a pertur-
bation equations version. Kozai14 showed that
a satellite theory, accurate to 5 m level for a low
altitude case requires that the short periodic
motion caused by first order and second order
oblateness (J2, J22), higher degree zonal har-
monics (Jn, n>2), tesseral harmonics, and
drag perturbations must be included. Sharma
and Raj15 satisfactorily integrated numerically
another form of KS differential equations
called KS uniform regular canonical equations
with Earth’s zonal harmonics J2 to J36.
Analytical expressions for short periodic
motion with the dominating term J2 in terms
of KS elements were generated by Sharma16

and included terms of fourth power in eccen-
tricity.

Earth's gravity
The Earth’s gravitational potential is usually

expressed as 

(1)

where R is the equatorial radius of the Earth,
m=G Me is the product of the gravitational con-
stant and the mass of the Earth, (r, g, d) are
the geocentric coordinates of the satellite with
g measured east of Greenwich, Cnm and Snm

are harmonic coefficients, Pnm (sin d) are
associated Legendre polynomials. 

Equation (1) was firstly derived by
Kaula.17,18 The terms with m = 0 correspond to
zonal harmonics, while the terms with 0<m <1
correspond to tesseral harmonics, and for m=n
the terms of sectorial harmonics.

In the present treatment the field will be
assumed represented by a series, truncated at
n=5. The coefficients C21 and S21 are finished,
the coefficients C10, C11, S11 will be zero. Both
the tesseral and sectorial harmonics will be
simply referred to as tesseral harmonics. Thus

equation (1) can be written in the form

(2)

where

(3)

(4)

where
Jn are the zonal harmonic coefficients, Pn (sin
d) is the Legendre polynomial, Pnm (sin d) is
the associated Legendre polynomial, and

(5.1) 

(5.2)

where

(6.1)

(6.2)

with

(7.1)

(7.2)

and r, a, e, W, ω, I are the radius vector, the
semi major axis, the eccentricity, the longitude
of ascending node, the argument of perigee,
and the inclination of the orbital plane of the
satellite respectively. 
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Let

(8.1)

(8.2)

Using equations (5), (6), (7) and (8) into
equations (3) and (4) the zonal and tesseral
terms in the Earth’s potential can be expressed
in the form

(9.1)                     

(9.2)

Radiation pressure
The direct effect of the solar radiation on

the satellite means the net acceleration result-
ing from the interaction (i.e. absorption,
reflecting, or diffusion) of the sun light with
each elementary surface of the spacecraft.
Each photon carries an amount of momentum
given by 

(10)

Where Mom is the photon momentum, Eg is
the energy of the photon ( proportional to the
photon frequency), and C is the velocity of
light. The momentum can be exchanged dur-
ing interaction with a solid surface. So, the
light behaves like a medium of material parti-
cles continuously emitted by the sun.

A satellite whose surface has a reflection
coefficient a, placed at a distance d from the
sun and receiving the solar radiation at an
angle of incidence c will experience an accel-
eration under the influence of solar radiation
pressure, determined by 

(11)

(12)

Where E0 is the solar constant, C is the
speed of light, as is the mean distance Earth-

Sun, and is a unit vector in the direction
Earth-Sun given, in a geocentric equatorial
frame by

(13)

Where As is the true celestial longitude of the
Sun and e is the obliquity of the ecliptic, As is
expressed in terms of the orbital elements as

As =fs+ωs. Due to the Earth’s shadow, is
distance continuous function of time. With
sufficient accuracy we can assume that:

i) The sun moves in a circular orbit such
that As becomes the mean longitude of the Sun
n t+constant.

ii) The direction and distance of the satel-
lite from the Sun are similar to those of the
Earth.  

The radiation pressure force may then be
written as

(14)

Assuming suitable averages of A and  c;  b’1
may be considered constant.

The KS transformation
This transformation was suggested by

Stiefel and Scheifele,13 the independent vari-
able is changed from t (the ordinary time) to s
(the fictitious time) through the Equation 

(15)

and the dependent variable x is changed to a
four vector u (the four dimensional parametric
space), i.e.

(16)

where

(17)

Then, the vector (x1, x2, x3, 0) is trans-
formed to 

(18.1)

(18.2)

(18.3)

The equation of motion
It is known that the equation of motion of an

artificial satellite under the effect of a pertur-
bation force is given by 

(20)

where 
V is the perturbing potential depending on
time and the position of the satellite, including
the a sphericity of the earth, and is given by
Equation (2)

is the perturbing force produced by the
direct radiation pressure of the sun, and
defined by equation (14).

Using the KS variables given in equations
(17) and take into account that

(21)

where h is the total energy, substituting into
equation (20), then, after some little reduc-
tions we have

(22.1)

(22.2)

(22.3)

(22.4)

Equations (22) are the equations of motion.

Numerical solution and application
The zonal and tesseral harmonics of the

Earth potential, and the radiation pressure

force are taken into account to solve the
equations of motion (22). This would give ten
ordinary differential equations, which could be
solved by fourth order Runge Kutta method of
integration. A Code was constructed using the
Mathematica (version 7) to solve these equa-
tions. a’s, b’s, ω, and t are obtained which are
used to obtain the orbital elements. Then the
effects on the orbital elements of the satellite
due to the radiation pressure, the tesseral and
zonal harmonics of the Earth’s gravitational
potential could be obtained. The application is
done for the high altitude artificial satellite
Lageos-1 (Table 1) (http://www.space-
track.org/perl/login.pl). Our results were con-
gruent to the observations, and gave more
accuracy than the previous works. Sehnal19

found that this effects were of order 10–9, Liu20

found that the effects of the zonal harmonics

Article

Table 1. The orbital elements of satellite
Lageos-1.

Mass 409.569 kg 
Area 0.36 m2

Semi major axis 12253.40546560 km 
Eccentricity 0.0044101
Inclination 109.8561 degrees
Argument of perigee 114.40538 degrees
Longitude of ascending node 336.8775 degrees
Mean anomaly 25.63974 degrees
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are of order J22, our results was 2.3¥10–6 i.e.
J22.We noted that the results of all other works
in such method (KS) give a good results such
as Sharma,16 and our results was an agree-
ment with observations, such that the order of
perturbations due to radiation pressure and
the potential of Earth’s gravity is about 10–6,
that means of order J22. Figures 1a, b and c
illustrate the perturbation effects on the semi-
major axis, eccentricity, and inclination
respectively during one day, Figures 2a, b and
c illustrate the same perturbation effects dur-
ing 150 days, while Figures 3 a,b and c show
the same effects during 600 days.

Conclusions

We concluded that
i. The KS variables are used to regularize

the equation of motion of the artificial
satellite. This regularization is used only
for the numerical solutions methods, but
not for the analytical solutions. 

ii. The Runge Kutta numerical integration
method of fourth order is a suitable
method for the transformations depend on
the KS variables, and give a good accuracy.

iii. Although the tesseral effects are (of order
J22), but must be taken into account with
the zonal effects (order J2 and J22).

iv. Effects due to radiation pressure, and
gravitational potential of the Earth togeth-
er on high altitude satellites orbit are of
order (J22). In the near future the effects
of the Earth’s shadow will be taken into
account. And in more complicated work
the indirect radiation pressure (albedo)
effects will be studied in details. 
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