

Dermatology Reports

https://www.pagepress.org/journals/index.php/dr/index

eISSN 2036-7406

Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. **Dermatology Reports** is, therefore, E-publishing PDF files of an early version of manuscripts that undergone a regular peer review and have been accepted for publication, but have not been through the copyediting, typesetting, pagination and proofreading processes, which may lead to differences between this version and the final one. The final version of the manuscript will then appear on a regular issue of the journal. E-publishing of this PDF file has been approved by the authors.

Please cite this article as: Ngo Minh V, Lý TP, Nguyen Trong H, Nguyen Hoang C. A study on tumor necrosis factor-α single nucleotide polymorphisms and psoriasis vulgaris in Vietnam. Dermatol Rep 2024 [Epub Ahead of Print] doi: 10.4081/dr.2024.9899

© the Author(s), 2024 Licensee PAGEPress, Italy

Submitted: 23/11/2023 - Accepted 10/03/2024

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article.

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

A study on tumor necrosis factor- α single nucleotide polymorphisms and psoriasis vulgaris in

Vietnam

Vinh Ngo Minh, ¹ Thiên Phúc Lý, ¹ Hao Nguyen Trong, ² Chuong Nguyen Hoang ¹

¹Pham Ngoc Thach University of Medicine, Ho Chi Minh City; ²HCMC Hospital of Dermato-

Venereology, Ho Chi Minh City, Vietnam

Correspondence: Thiên Phúc Lý, Pham Ngoc Thach University of Medicine, No. 2, Duong Quang

Trung Str., Ward 12, District 10, Ho Chi Minh City, Vietnam.

E-mail: lythienphuc2014@gmail.com

Key words: psoriasis; single nucleotide polymorphism; tumor necrosis factor-α.

Acknowledgments: we thank all the patients for their participation in the study.

Contributions: VNG, PLT, HNT, conceptualization; VNG, PLT, proposal of study writing; PLT,

data collection; PLT, CNH, data analysis; VNG, CNH, manuscript writing; VNG, HNT, manuscript

revision. All the authors approved the final version to be published.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: none.

Ethics approval and consent to participate: the study was approved by the Ethics Committee of

Pham Ngoc Thach University of Medicine: approval No: 738/TĐHYKPNT-HĐĐĐ (08 November

2022).

Availability of data and material: due to privacy and ethical concerns, neither the data nor the

source of the data can be made available.

Informed consent: informed consent was obtained from all individual participants included in the

study.

Abstract

This study aims to evaluate the association between tumor necrosis factor- α (TNF- α) single nucleotide polymorphisms and psoriasis vulgaris. This cross-sectional study involved 140 Vietnamese patients of Kinh ethnicity diagnosed with psoriasis vulgaris. The diagnosis of psoriasis vulgaris was based on clinical signs and symptoms. We used Sanger sequencing to analyze two SNPs rs1799964 and rs1799724. Data were analyzed by SPSS 25. SNP rs1799964 has the highest rate of TT genotype at 62.1%, more than double the heterozygous TC genotype at 30%, CC genotype has the lowest rate at 7.9%. CC genotype of SNP rs1799724 accounted for 90% and no homozygous genotype TT was detected. No statistically significant association was found between both SNPs and clinical features (p >0.05). The Psoriasis Area and Severity Index (PASI) was significantly lower in patients with variant alleles (P = 0.021). Our data show a significant negative association between SNPs variant alleles and disease's severity. Studies with larger sample sizes and more biochemical indices may help identify reliably predictive markers for these SNPs.

Introduction

Psoriasis is a chronic inflammatory immune mediated skin disease that not only negatively affects the skin but can also have detrimental effects on joints to the extent of causing disability.¹ According to a systematic review of worldwide epidemiology, the prevalence of psoriasis in adults ranges from 0.51% to 11.43%.² Psoriasis pathomechanism is characterized by systemic inflammation and epidermal proliferation specified by many different immunological biomarkers.³ Among these cytokines, TNF-α is an important proinflammatory mediator and its high-level expression has been found within the psoriatic lesions.^{4, 5} Along with the improvement of science in molecular biology and genetics, SNP has been chosen for research in genetically complex diseases like psoriasis. 6 SNP is defined as a substitution of a single nucleotide at a specific position in the genome that is present with the fraction of considered population equal or more than 1%.7 SNP -1031 and -857 are located in the promoter region of TNF–α gene and both are missense substitutions.⁸ More over these SNPs were suggested to be related to higher rate of TNF-α production.⁹ Recently, a meta-analysis study investigated the association between the TNF- α gene SNPs and the risk of psoriasis in 10 countries around the world. 10 Results on this correlation among countries are heterogeneous due to racial and geographic differences. 10 Therefore this study aims to evaluate the association between SNPs TNFα and psoriasis vulgaris in Vietnam.

Materials and Methods

This cross-sectional study was conducted at Ho Chi Minh City [Ho Chi Minh City (HCMC)] Hospital of Dermato-Venereology from December 2022 to April 2023. This study was reviewed and approved by the Ethics Committee of Pham Ngoc Thach University of Medicine (No: 738/TĐHYKPNT-HĐĐĐ). Patient selection and data collection followed study protocol as well as national ethics disciplines. We collected the written informed consent form [Informed Consent Form (ICF)] from each patient involved in the study.

The main exclusion criteria were:

- Patients who were under 18 years old;
- Patients who were not Vietnamese and not of Kinh ethnicity;
- Patients who received systemic or biologic treatment in the past three months.

According to a previous study ^{11, 12}, we calculated the minimum sample size needed for each group using the formula as follows: $n = \frac{Z_{1-a/2}^2 \cdot p \cdot (1-p)}{d^2}$, with $Z_{1-a/2} = 1.96$, d $\approx 6.5\%$. By that, we intended to enroll 140 psoriasis patients into this study.

The diagnosis of psoriasis was based on clinical signs and symptoms and we used the PASI score to evaluate the severity of psoriasis. The clinical features were assessed directly by experienced dermatologists. The main outcome of the study was the SNP detection; 2 ml of venous blood samples were collected and put into [Ethylene Diamine Tetra Acetic (EDTA)]-coated tubes to prepare for DNA extraction. The DNA separation by silica adsorption technique is conducted to extract DNA from blood samples. The DNA extracted samples were stored at -20°C ready for the Sanger sequencing afterward with the following primer set:

We used Microsoft Excel and SPSS software to process data and perform statistical analyses. The associations between SNPs and other variables were assessed by the Chi-squared test (or Fisher's exact test). The comparison of continuous variables was demonstrated by Student's t-test. Statistical significance was defined by p-value <0.05.

Results

In this study, the median age of patients was 44 years with an interquartile range of 25 years. Male patients accounted for a proportion of 65.7%. The proportion of patients without comorbidity was higher than that of the comorbidity group (63.6% versus 36.4%). Clinical severity of psoriasis was assessed using the PASI scale: the median PASI score was 14.35 points. At the same time, nail damage due to psoriasis was assessed by the [Nail Psoriasis Severity Index (NAPSI)] index and had a median value of 47 points. Table 2 showed the genotype frequency of rs1799964 and rs1799724.

Table 3 recorded the associations between SNP rs1799964 and rs1799724 with clinical characteristics. We did not identify a statistically significant difference between the gene morphologies of SNP rs1799964 and rs1799724 based on the clinical features.

However, when we evaluated patients in term of the presence of any TNF- α polymorphisms, we discovered a significant difference in the PASI score between two groups (P=0.021).

Discussion

Psoriasis is a disease with a complex pathogenesis characterized by the interaction between both genome-specific factors and environmental factors. It is this complicated interaction that leads to clinical and paraclinical characteristics that differ between individuals and between races. 13 The results of analyzing SNP rs179964 showed that the homozygous TT genotype had the highest frequency of up to 62.1%, more than double in comparison to the heterozygous TC genotype of 30%, whereas the CC genotype had the lowest frequency of 7.9%. These results are consistent with the results of genetic analysis on Caucasian psoriasis patients in Spain conducted by Gallo et al. (2012) ¹⁴ and Cabaleiro et al. (2013) ¹⁵ in terms of genotype and allele frequencies. Moreover, similar results were also observed in German Caucasian plaque psoriasis patients in a case-control study with a sample size of up to 1,126 individuals by Reich et al. 12 Most recently in 2022, a study on Caucasian Italian patients with psoriasis also demonstrated the same results regarding both genotype and allele frequencies. 16 However, the results of genetic analysis of SNP rs1799724 did not find any cases of homozygous variant allele T and homozygous CC genotype accounted for the majority of surveyed cases up to 90%, while the heterozygous genotype was only accounts for 10%. We found the Tvariant allele frequency of rs1799724 has a very low value of only 5%. In contrast to the similarity in genotype and allele frequencies in rs1799964, the sequencing results of rs1799724 have statistically significant differences compared to two studies on Caucasian patient populations in the Spain by Cabaleiro, et al. 15 and Gallo, et al. 14. However, there was a statistically significant difference in the genotype and allele frequencies in the study of Aslihan Gulel, et al. on Turkish Caucasian patients. 15, 16 This shows that geographical and anthropological factors affect the distribution of TNFα SNPs, thereby confirming the importance of in-depth genomic studies on each specific ethnic group.

A study by Higuchi, et al. on Japanese people showed that variant alleles of both SNPs of the TNF- α gene rs1799964 and rs1799724 nearly double the amount of TNF- α produced in the body when stimulated by different agents. TNF- α is a pro-inflammatory cytokine that amplifies inflammation through Th1, Th17 cells, cytokines such as [Interleukin (IL)]-12, IL-23, IL-8, and especially the positive feedback with the nuclear factor kappa B (NF- κ B). Furthermore, the

concentration of TNF- α in the blood as well as the expression level of mRNA of the TNF- α gene have been shown to be closely related to the pathogenesis of psoriasis and the severity of the disease. The disease with clinical relatures of psoriasis. Our results are similar to the study of Daprà, et al. on Italian Caucasian patients with psoriasis. However, in term of the presence of any variant alleles, we discovered that the PASI score was significantly higher in the non-SNP group. The result indicated that the SNP may affect the production of TNF- α , which in turn aggregate the severity of psoriasis. We also hypothesize that the patients with SNPs may not adapt effectively with TNF- α inhibitors. Due to the limited resources, we could not evaluate the level of serum TNF- α in the study patients to prove our hypothesis. We propose other studies with larger sample size and involving laboratory data to elicit the link between SNP and clinical features and treatment.

Conclusions

The proportion of SNPs on TNF-encoded gene, i.e. rs1799964 and rs1799724, was relatively high. The SNPs seemed to affect the severity of psoriasis. Though the study could not conclude the association between the SNPs and their expression profiles, we still propose hypotheses for future studies to move forward and fulfill the gap between gene and clinical contexts of psoriasis.

Abbreviations

Abbreviations Full form

PASI Psoriasis Area and Severity Index

NAPSI Nail Psoriasis Severity Index

SNP Single nucleotide polymorphism

HCMC Ho Chi Minh City

ICF Informed consent form

IL Interleukin

IQR Interquartile range

NF-κB Nuclear factor kappa B

EDTA Ethylene Diamine Tetra Acetic

References

- 1. Organization WH. Global report on psoriasis. 2016.
- 2. Michalek IM, Loring B and John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol 2017; 31: 205-212. 2016/08/31. DOI: 10.1111/jdv.13854.
- 3. Petit RG, Cano A, Ortiz A, et al. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. Int J Mol Sci 2021; 22 2021/06/03. DOI: 10.3390/ijms22094983.
- 4. Nedoszytko B, Szczerkowska-Dobosz A, Zablotna M, et al. Associations of promoter region polymorphisms in the tumour necrosis factor-alpha gene and early-onset psoriasis vulgaris in a northern Polish population. Br J Dermatol 2007; 157: 165-167. 2007/06/08. DOI: 10.1111/j.1365-2133.2007.07993.x.
- 5. Uyemura K, Yamamura M, Fivenson DF, et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol 1993; 101: 701-705. 1993/11/01. DOI: 10.1111/1523-1747.ep12371679.
- 6. Wakui M. [Analysis of single nucleotide polymorphisms (SNPs)]. Rinsho byori The Japanese journal of clinical pathology 2013; 61: 1008-1017. 2014/01/24.
- 7. Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280: 1077-1082. 1998/06/06. DOI: 10.1126/science.280.5366.1077.
- 8. El-Tahan RR, Ghoneim AM and El-Mashad N. TNF-α gene polymorphisms and expression. SpringerPlus 2016; 5: 1508. 2016/09/22. DOI: 10.1186/s40064-016-3197-y.
- 9. Higuchi T, Seki N, Kamizono S, et al. Polymorphism of the 5'-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 1998; 51: 605-612. 1998/08/07. DOI: 10.1111/j.1399-0039.1998.tb03002.x.
- 10. Shen C, Wang H, Song Q, et al. Tumor Necrosis Factor-alpha 308 G/A polymorphism and psoriasis risk: A pooled analysis in different populations. Medicine (Baltimore) 2020; 99: e22339. 2020/11/22. DOI: 10.1097/MD.000000000022339.
- 11. Cabaleiro T, Román M, Gallo E, et al. Association between psoriasis and polymorphisms in the TNF, IL12B, and IL23R genes in Spanish patients. Eur J Dermatol 2013; 23: 640-645. 2013/10/19. DOI: 10.1684/ejd.2013.2144.

- 12. Reich K, Hüffmeier U, König IR, et al. TNF polymorphisms in psoriasis: association of psoriatic arthritis with the promoter polymorphism TNF*-857 independent of the PSORS1 risk allele. Arthritis and rheumatism 2007; 56: 2056-2064. 2007/05/29. DOI: 10.1002/art.22590.
- 13. Rendon A and Schäkel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci 2019; 20 2019/03/27. DOI: 10.3390/ijms20061475.
- 14. Gallo E, Cabaleiro T, Román M, et al. [Study of genetic polymorphisms in the tumor necrosis factor α promoter region in Spanish patients with psoriasis]. Actas dermo-sifiliograficas 2012; 103: 301-307. 2011/12/23. DOI: 10.1016/j.ad.2011.10.002.
- 15. Gulel A, Inaloz HS, Nursal AF, et al. Association of the TNF-α, IL-2, and IL-2RB gene variants with susceptibility to psoriasis in a Turkish cohort. Cent Eur J Immunol 2018; 43: 50-57. 2018/05/08. DOI: 10.5114/ceji.2018.74873.
- 16. Dapra V, Ponti R, Lo Curcio G, et al. Functional study of TNF-alpha as a promoter of polymorphisms in psoriasis. Ital J Dermatol Venerol 2022; 157: 146-153. 2021/05/14. DOI: 10.23736/S2784-8671.21.06979-0.
- 17. Asadullah K, Prösch S, Audring H, et al. A high prevalence of cytomegalovirus antigenaemia in patients with moderate to severe chronic plaque psoriasis: an association with systemic tumour necrosis factor alpha overexpression. Br J Dermatol 1999; 141: 94-102. 1999/07/27. DOI: 10.1046/j.1365-2133.1999.02926.x.
- 18. Jang DI, Lee AH, Shin HY, et al. The Role of Tumor Necrosis Factor Alpha (TNF- α) in Autoimmune Disease and Current TNF- α Inhibitors in Therapeutics. Int J Mol Sci 2021; 22 2021/04/04. DOI: 10.3390/ijms22052719.
- 19. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor perspectives in biology 2009; 1: a001651. 2010/05/12. DOI: 10.1101/cshperspect.a001651.
- 20. Meephansan J, Subpayasarn, Urairack, Ohtsuki, Mayumi, Pathogenic Role of Cytokines and Effect of Their Inhibition in Psoriasis. In: Anca Chiriac (ed) Psoriasis: An Interdisciplinary Approach to. 2017, pp.56-78.
- 21. Yost J and Gudjonsson JE. The role of TNF inhibitors in psoriasis therapy: new implications for associated comorbidities. F1000 medicine reports 2009; 1 2009/01/01. DOI: 10.3410/m1-30.

Table 1. The primer set and location of SNPs.

SNP	Location	Sequence (5'-3')
rs1799964 (-1031 T→C)	chr6:31574531 (GRCh38.p14)	Forward primer: GAGCTTCAGGGATATGTGATGG
rs1799724	chr6:31574705	Reverse primer: TTGGCTTCCAAGGAACTCTG
(-857 C→T)	(GRCh38.p14)	

Table 2. Genotype frequencies in TNF- α rs1799964 and rs1799724.

SNP	Genotype	n	%
	TT	87	62.1
rs1799964	TC	42	30.0
	CC	11	7.9
	CC	126	90.0
rs1799724	СТ	14	10.0
	TT	0	0

Table 3. Associations between SNP rs1799964 and rs1799724 with clinical characteristics.

Clinical characteristics		rs1799964		Duglara	rs1799724		D	
Chinical characteristics		TT (n=87)	TC (n=42)	CC (n=11)	- P-value	CC (n=126)	CT (n=14)	—P-value
Family history	Yes	17 (19.5%)	7 (16.7%)	3 (27.3%)	0.726ª	25 (19.8%)	2 (14.3%)	-1.000 ^b
	No	70 (80.5%)	35 (83.3%)	8 (72.7%)		101 (80.2%)	12 (85.7%)	
Age of onset	<40	59 (67.8%)	26 (61.9%)	4 (36.4%)	0.120a	79 (62.7%)	10 (71.4%)	0.520a
	≥ 40	28 (32.2%)	16 (38.1%)	7 (63.6%)		47 (37.3%)	4 (28.6%)	
Psoriatic arthritis	Yes	28 (32.2%)	11 (26.2%)	2 (18.2%)	-0.548ª	37 (29.4%)	4 (28.6%)	-1.000 ^b
	No	59 (67.8%)	31 (73.8%)	9 (81.8%)		89 (70.6%)	10 (71.4%)	
Disease severity scale (PASI)	Mild	27 (31.0%)	19 (45.2%)	3 (27.3%)	0.195ª	42 (33.3%)	7 (50.0%)	0.466 ^b
	Moderate	26 (29.9%)	15 (35.7%)	4 (36.4 %)		42 (33.3%)	3 (21.4%)	
	Severe	34 (39.1%)	8 (19.0%)	4 (36.4%)		42 (33.3%)	4 (28.6%)	
Nail severity scale (NAPSI)		48 (48)	37 (43)	56 (71)	0.152°	48 (47.25)	40 (51)	0.436 ^d

^a Chi-squared test, ^b Fisher's exact test, ^c Kruskal Wallis test, ^d Mann-Whitney U test

Table 4. Associations between variant alleles and clinical characteristics.

Clinical characteristics		Presence of variant a	P	
		Yes	No	
		(n=64)	(n=76)	
Family history	Yes	12 (18.8%)	15 (19.7%)	1.000a
	No	52 (81.2%)	61 (80.3%)	
Age of onset	<40	37 (57.8%)	52 (68.4%)	0.220a
	≥ 40	27 (42.2%)	24 (31.6%)	
Psoriatic arthritis	Yes	15 (23.4%)	26 (34.2%)	0.194ª
	No	49 (76.6%)	50 (65.8%)	
Disease severity (PASI)		11.65 (6.45-20.15)	16.90 (9.20-23.18)	0.021 ^b
(Median/IQR)				
Nail severity scale (NAPSI)		40 (18.50-64)	49 (28-76)	0.078 ^b
(Median/IQR)				

^a Chi-squared test, ^b Mann-Whitney U test