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Abstract 

Biological pharmaceuticals are increasingly
used in modern medicine and give remarkable
improvements for many different patient
groups. Unfortunately, for several of these
compounds, undesirable immune reactions
are induced against the drug. The resulting
anti-drug antibodies modify the pharmacoki-
netic and pharmacodynamic properties of the
drug and, by blocking the drug-target interac-
tion, reduce the effects of the treatment. Anti-
drug antibodies may also increase the risk of
hypersensitivity reactions by the formation of
immune complexes. Furthermore, by cross-
reacting with the endogenous homolog of the
drug, the anti-drug antibodies might impair
important physiological functions even after
treatment cessation. As a consequence, anti-
drug antibodies need to be taken in account
when estimating the benefit-burden ratio of a
treatment for an individual patient, but also
when calculating the value of therapeutics on
a socio-economic level. In this review we give
an overview over the current understanding of
the immunogenicity against drugs, exempli-
fied for patients with hemophilia A, multiple
sclerosis, rheumatoid arthritis and Crohn’s
disease. We discuss known and potential risk
factors for anti-drug antibody formation and
finally outline suggested strategies for predic-
tion and prevention.

Introduction

The successful identification of important
molecular interactions contributing to disease
pathogenesis have led to the promising devel-
opment of several biological pharmaceuticals
(BPs), of which many have shown to be highly
efficient treatments in clinical trials as well as
in the post-marketing settings. These com-
pounds can be designed to supplement miss-
ing factors [e.g. factor VIII for hemophilia A
(HA)], to interfere with pathological processes
by immunomodulation [e.g. interferon beta

(IFNβ) for multiple sclerosis (MS)] or by
blocking pathogenic signaling [e.g. anti-tumor
necrosis factor alpha (TNFα) therapeutics for
rheumatoid arthritis (RA) or Crohn’s disease
(CD) and the anti-integrin therapy in MS or
CD]. The quite specific mode of action of sev-
eral BPs is promising, as physiological func-
tions are mainly preserved, but pathological
processes successfully targeted or replaced.
However, the chronic nature of many of these
diseases will require repetitive parenteral
administration for life. This results in the risk
of undesirable immune responses against the
drug, leading to the formation of anti-drug
antibodies (ADA). One major concern for clini-
cians is the loss of response (LOR) to the treat-
ment due to the formation of ADA. The LOR
can be due to two non-exclusive mechanisms.
First, all ADA that bind to the BP, also referred
to as binding antibodies (BAbs), can alter
pharmacokinetic properties of the agent by
forming immune complexes with the drug.
These immune complexes can enhance the
clearance of the drug from the circulation, and
thus potentially the effective dosage of the
treatment.1 Second, so-called neutralizing
ADAs (NAbs), which is essentially higher
affinity BAbs, can directly interfere with the
biological activity of the drug by binding to epi-
topes that lie within the active site or by steric
hindrances of sites in close proximity to it.2 An
additional concern with ADA-formation is the
increase of adverse effects, which is negative-
ly impacting the benefit-risk ratio of a therapy.
For example, immune complexes of ADAs with
BPs have been associated with an increased
risk of type III hypersensitivity reactions.3

Furthermore, when a biological therapeutic
supplements an endogenous homolog, ADAs
against the pharmaceutical could potentially
also target the endogenous homolog, with
unforeseeable consequences for physiological
functions even long after treatment cessation.4

An illustration of this potential complication is
the case reports of severe thrombocytopenia or
pure red cell aplasia induced by anti-throm-
bopoietin or anti-erythropoietin NAbs that
cross-react with the corresponding endoge-
nous protein.5-7 Thus, the risk of ADA-forma-
tion needs to be taken in account when esti-
mating the benefit-burden ratio of a treatment
for an individual patient, and when calculating
the value of a therapeutic on a socio-economic
level, but preferentially already during drug
development.8

In this review we discuss the immunological
mechanisms involved in ADA-formation, the
current methods used to detect ADAs, and out-
line a perspective to predict, prevent and
deplete ADAs. In each section we provide
examples from three different clinical fields:
first, the treatment of HA with more than 50
years of experience with so called factor VIII
inhibitors;9 second, the treatment of MS where

the detection of ADAs were noted already with-
in the first pivotal trials for disease modifying
BPs;10 and third, the treatment of RA and CD
as examples from a field where the clinical rel-
evance of ADAs is controversial, partly due to a
lack of standardized methods to assess
immunogenicity.11,12

Immunological mechanisms
involved in anti-drug
antibody-formation 

The frequencies of ADA positivity differ
largely for different treatments and this is part-
ly explained by the degree of immunological
tolerance that exists naturally. For BPs with
high bio-similarity to proteins encoded in the
human genome, it would be expected that the
immune system should tolerate the BP equally
well as the corresponding self-proteins.
Tolerance to a BP is regulated by central and
peripheral immunological mechanisms and is
dependent on the formation and activation of
BP specific T- and B-cell clones and deletion of
self-reactive clones. In the thymus the central
tolerance eliminates immature T cells express-
ing T-cell receptors that form high-avidity
interactions with self-peptides presented in
the context of human leukocyte antigen
(HLA).13 This T-cell maturation step will
ensure that most self-reactive T-cell clones are
deleted. 
In patients with HA there is most likely low or

non-existing tolerance to factor VIII, since the
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disease in itself is due to the lack of this protein.
Probably several factor VIII specific T-cell clones
have escaped the central tolerance and are pres-
ent to cause a classical T-cell dependent activa-
tion of B cells, leading to ADA-formation, when
the therapy starts.14,15 This is a considerable
risk with replacement therapies, where genetic
deficiency or a defect in the endogenous protein
causes the disease. For HA patients with factor
VIII treatment a high frequency of ADA, or
inhibitors as they are termed in this field, is
formed.15,16 These are predominately of the
high-affinity immunoglobuline G (IgG) isotype,
mainly of the IgG4 subclass, indicating a T-cell
dependent B-cell activation.15 In accordance
with that, the risk of ADA-formation is strongly
influenced by the underlying factor VIII muta-
tion, with higher immunogenicity seen in
patients with nonsense versus missense muta-
tions.15,17,18

While it might not be unexpected that anti-
bodies are formed against substances that the
immune system has never encountered before,
ADAs are also formed against proteins that we
normally are tolerant against and which have
been part of the central tolerance. This can be
explained by a breaking of the peripheral toler-
ance.19 Since not all peptides of every self-pro-
tein can be expressed in thymus, a proportion
of self-reactive T cells will still escape to the
periphery. This is usually not a problem, since
the peripheral tolerance ensures that naïve T
cells only become activated by dendritic cells
(DCs) when they are provided with both the
antigen specific peptide-HLA complex and
proper co-stimulatory signals.20 DCs will
express these co-stimulatory molecules when
they sense danger through the stimulation of
pattern recognition receptors.21 These recep-
tors are activated by pathogens, but also by tis-

sue damage. Thus, the disturbance of the
integrity of the tissue due to repetitive injec-
tions of BPs and components present in bacte-
rial-derived drug preparations are both factors
that might activate DCs. 
Several types of DCs build a network of sur-

veillance in the skin, of which the CD14+ DCs
have been indicated to play an important role
in induction of the humoral immunity against
compounds injected subcutaneously.22 These
DCs are the main activator of T cells special-
ized to prime naïve B cells and individual vari-
ations on the presence of this DC subtype
might be important determinates of ADA
induction. The sustained quantities and quali-
ties on the circulating ADA is probably influ-
enced by the phenotypes of T and B cell sub-
sets. As an example the CXCR5+CD4+ T follic-
ular cells are most capable of activating germi-
nal center B cells to induce high-affinity iso-
type-switched IgGs and efficient B-cell memo-
ry responses.23,24 Thus, individual variations,
activation and regulation of lymphocytes and
DC subsets might be most critical for ADA for-
mation against injectable drugs. 
Patients with MS that express normal levels

of endogenous IFNβ protein receive treatment
with an IFNβ homolog that they ought to be tol-
erant against, but yet ADAs are formed in
these patients. In this case, two non-exclusive
different mechanisms could be envisioned to
be involved in ADA-formation, the T-cell
dependent and the T-cell independent activa-
tion of B cells. The repetitive stimulation of
DCs at the injection sites will eventually lead
to the uptake and presentation of IFNβ pep-
tides in lymph nodes by the DCs, a site where
IFNβ do not appear normally. Therefore silent
IFNβ-specific T-cell clones become activated
and can give the help that IFNβ-specific B cells
need to become ADA producing cells. This T-

cell dependent B-cell activation will lead to the
high-titer ADA-production of antibodies with
high affinity. 
The T-cell independent B-cell activation can

be induced by aggregates of IFNβ cross-linking
B-cell receptors by repetitive structures.14,25

Although cross-linking of B-cell receptors in
the first place leads only to the formation of
low-affinity immunoglobuline M-antibodies,
the presence of additional stimulating factors
such as B-cell activating factor (BAFF) or
interferon �are discussed to allow marginal
center zone B cells - the effector B cells of the
T-cell independent antibody production - a lim-
ited switch to IgG, and potentially also the
induction of memory responses.14 Both these
mechanisms are probably involved when ADA
is formed in IFNβ treated patients, although to
different extent depending on the preparation,
which will be discussed later.
Anti-TNFα is an approved drug for RA and/or

CD and include infliximab, etanercept and
adalimumab. As infliximab is a chimeric
murine-human IgG1 monoclonal antibody, the
T-cell dependent B-cell activation toward a
neo-antigen as outlined above might explain
the comparable high immunogenicity (Table
1).26 Etanercept is a humanized IgG1 Fc frag-
ment fused to two identical humanized TNF-
receptors, demonstrating lower immunogenic-
ity.11 Nevertheless, for adalimumab, a purely
humanized IgG1 antibody, conflicting data on
ADA-frequency has been published [<1% to
87% (Table 1)],27 highlighting the fact that not
only homology to human sequences, but also
other risk factors discussed below as well as
the ADA assay used, are critical to the reported
immunogenicity. 
Natalizumab, a humanized IgG4 antibody

that targets the α4-subunit of two different

Review

Table 1. Immunogenicity of different biological pharmaceuticals.

Drug Route Indication Frequencies (%) Clinical relevance and comments

Factor VIII s.c.; i.v. HA 0-3315,16,28 Highly relevant, high frequency in patients with severe HA, LOR associated
with potentially life-threatening complications

IFNβ MS Immunogenicity different for different IFNβ-preparations, high titers of NAbs
-1b s.c. 28-47*25 associated with LOR, role of low titer NAbs or BAbs controversial
-1a s.c. 5-38*25
-1a i.m. 2-14*25

Natalizumab MS 2,4-6° Comparable low frequency in post-marketing studies, association with
CD 6-9,5°29,30 infusion-related side effects, testing highly standardized, assay does not

detect monovalent antibodies
Anti-TNFα BPs RA LOR and increase of the therapeutic dosage established for infliximab,
-Infliximab i.v. 8-4431-34 association with infusion-related side effects, testing not standardized,
-Etanercept s.c. 0-5,635-38 concomitant treatment and dosage shown to highly impact frequency of
-Adalimumab s.c. <1-8739-44 ADA31

CD
-Infliximab i.v. 6-6745-49
-Adalimumab s.c. 2,6-1750,51

HA, hemophilia; MS, multiple sclerosis; RA, rheumatoid arthritis; s.c., subcutaneously; i.m., intramuscular; MRI, magnetic resonance imaging; NAbs, neutralizing antibodies; BAbs, binding antibodies; CD, Crohn’s disease;
LOR, loss of response; i.v., intravenously; *frequency of NAbs; °persistent positives only.

Non
-co

mmerc
ial

 us
e o

nly



[page 58] [Drugs and Therapy Studies 2012; 2:e11]

integrins,27 induces ADAs in patients with MS
or CD to some extent, but these numbers are
considerably lower compared to the immuno-
genicity of other BPs in the treatment of the
same diseases. Thus, the degree of reaction
the immune response will elicit against a spe-
cific BP will be influenced by both the molecu-
lar structure of the BP and the tolerance state
of the patient. There are however several addi-
tional factors, as discussed next, that influence
immunogenicity of a drug and the frequency of
ADA on a population level (Table 1). 

Risk factors for the
development of anti-drug
antibodies

The variety of risk factors that will determine
the level of immunogenicity of a certain BP
includes the molecular composition of the drug,
the mode of administration, genetic factors, the
disease treated, the dosage of the BP, the con-
comitant medication, and so far undefined vari-
ables. These multitude of factors explain why
only a proportion of patients develop ADAs.19

Characteristics of the biological
therapeutics
Product related factors include the degree of

homology to endogenous proteins as discussed
before. This, however, is not restricted to for-
eign or chimeric BPs; also for humanized BPs
variations in sequences are known to influ-
ence the immunogenicity.25 The incidence of
ADA-formation is partly dependent on the
affinity of peptides to HLA, where some BP-for-
mulations containing immunodominant pep-
tides binding to common HLA alleles will give a
higher incidence of ADA.52 In addition, post-
translational modifications such as glycosyla-
tion have been shown to impact ADA-forma-
tion. In general, non-glycosylated variants are
more immunogenic than glycosylated proteins,
probably contributing to the higher immuno-
genicity of bacteria-derived IFNβ-1b compared
with mammalian-cell derived IFNβ-1a (Table
1) and partly explained by the formation of pro-
tein aggregates.19 Interestingly, factor VIII is a
glycoprotein and the immunogenicity varies
dependent on what sugar residues are coupled
to the protein. Mannosylation of factor VIII
alleviates the receptor mediated endocytosis
by DCs, and thus is associated with a higher
probability to activate T-cell dependent ADA-
formation.53 Contaminants and process-relat-
ed impurities can also contribute to immuno-
genicity, e.g. illustrated by the observation of a
sudden increase in immunogenicity of a factor
VIII preparation after changes in the produc-
tion process.54 In addition, formulations and

storage might impact immunogenicity, as
these factors can influence the amount of
aggregates being formed.19

The mode and the frequency of
administration
A higher frequency of administration

increases the risk of ADA-formation compared
with an acute therapy.19 The only once weekly
intramuscular injected IFNβ-1a seems to carry
the lowest risk of ADA-formation among the
two different IFNβ-1a preparations.55 For fac-
tor VIII and IFNβ the subcutaneous adminis-
tration is considered more immunogenic com-
pared with the intravenous and intramuscular
administration, respectively.55,56 This seems
not to be true for anti-TNFα BPs, although this
comparison is compromised by the chimeric
character of infliximab (Table 1). 

The genetics of the individual, and
the diseases treated
The genetic influence in ADA-formation is

evident when patients, due to a genetic deficien-
cy, lack the expression of a normal endogenous
protein. These patients are expected not to be
tolerant to the BP, resulting in high rates of ADA-
formation in severely affected patients with
HA.57 However, also in tolerant patients the
genetics influence the immunogenicity. Several
genetic studies in different fields have shown an
HLA association between different BPs and the
formation of ADAs. The HLA molecules are high-
ly polymorphic,58 and not all peptides of a drug
will bind to all HLA alleles. Thus, both the amino
acid composition of the drug, and the HLA hap-
lotype of the patients are likely to influence the
risk of developing ADAs. For MS patient treated
with IFNβ several associations between certain
HLA class II haplotypes and ADA-development
has been reported. 52,59,60 Interestingly, the dif-
ference between the reported ADA-associated
alleles, DRB1*04:01 and *04:08, and the protec-
tive alleles, DRB1*04:02, DRB1*04:03 and
DRB1*04:04, was only one amino acid in posi-
tion 86 at the end of the alpha helix. This indi-
cates that a single binding motif might have
large impacts on which agretopes of IFNβ are
presented. No difference was observed when
looking at BAbs and NAbs separately, suggesting
that the HLA-polymorphism might be important
for triggering the presence of ADAs, but less
important for the affinity maturation.59,60 Not
only in MS, but also for factor VIII treated
patients with HA, several class II HLA associa-
tions have been found, although these seem to
be comparable weak.17 In addition, certain poly-
morphisms in non-HLA genes, such as TNFα, IL-
10, and CTLA-4 in HA,61 or in proximity to a pro-
tein kinase gene and a gene involved in signal
transduction pathways in MS patients treated
with IFNβ, have been linked to ADA-formation.62

The HLA associations are probably highly
dependent on the protein sequence of the BPs;
thus, not necessarily the same HLA association
can be expected to increase the risk of ADA-
formation for different BPs, or different vari-
ants of a class of BPs. However, some of the
non-HLA associations regulating ADA-forma-
tion could potentially predispose for develop-
ing antibodies against several BPs. Although
this has not yet been studied in a comprehen-
sive manner, at least in MS patients switched
from IFNβ to natalizumab, no increased risk of
ADA-formation toward both IFNβ and natal-
izumab were found, indicating different genet-
ical susceptibility factors for ADA induction
towards different BPs.63

The underlying disease of the treated patient
might have an impact on ADA-formation. In HA,
the causative factor VIII mutation strongly influ-
ences the risk of ADA (e.g. nonsense versus
missense mutations).17 In addition, the excess
bleeding is thought to give a state of chronic
inflammation. This might result in a general
unspecific activation of the immune system,
increasing the risk of ADA-formation. This prin-
cipal is supported by experimental data showing
lower immunogenicity for factor VIII replace-
ment therapy when animals were treated with
the anti-inflammatory agent Hemeoxygenase-1
(HO-1) before the injection.64 Similarly, one can
hypothesize that IFNβ, which in itself stimu-
lates the immune response, and the heightened
inflammation status of MS patients, both to
some extent contribute to the risk of ADA-for-
mation.

Concomitant medication and the
dosage of the biological
pharmaceutical
Mainly for TNF-antagonists the dosage as

well as the administration of concomitant
medication - such as methotrexate - has been
shown to impact immunogenicity. Higher
dosage might induce tolerance, and immuno-
suppressive co-medication suppresses the
activation of antibody-producing B cells, both
resulting in lower ADA frequency.31 In MS the
combined administration of IFNβ and pulse
methylprednisolone therapy can reduce ADA
development in IFNβ naïve individuals.65

Methods to detect anti-drug
antibodies

The difference in ADA frequencies reported
for the same BP in different studies can also be
explained by the method used to detect the anti-
bodies (Table 1). Assays for determining sero-
prevalence and immunogenicity need to detect
all binding ADAs, but also to assess the frequen-
cies and quality of their neutralizing capacity.
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Typically, immunoassays are used to screen for
ADAs.66 Samples tested positive in the
immunoassay for ADAs are subsequently tested
in an in vitro cell-based bioassay or a non-cell
based competitive ligand binding assay to deter-
mine the neutralizing capacity.1,2,67

General assay principles for
screening of anti-drug antibody
presence 
Conventional screening assays such as

enzyme linked immunosorbent assay (ELISA)
and radioimmunoassay (RIA) are widely used
for detection of ADAs. ELISAs are rapid, robust
and easy to perform, allowing for high through-
put screening. Different methods such as
direct, indirect, and bridging ELISAs can be
applied.67 In the bridging assay the antibody is
captured by the solid-phase-bound antigen and
visualized by the labeled antigen.68 Since the
antibody is recognized twice this results in
higher specificity.67 This can be applied with or
without radioimmunolabeling. A disadvantage
of the bridging ELISA and radiolabeling tech-
niques, however, is that they cannot distin-
guish between BAbs and NAbs. Therefore,
these assays cannot tell what percentage of the
antibodies detected are neutralizing and actu-
ally have direct implications on the binding of
the drug to its target. Moreover, the restricted
use of radioactivity limit the use of the RIA
assays in clinical routine testing. 

General principles of neutralizing
antibody assays 

In vitro neutralizing antibody assays are the
methods that characterize the ability of ADAs
to antagonize the biological effect of a BP. For
most of the BPs, NAbs are currently studied in
cell-based bioassays in which treated cells
respond directly or indirectly to the BP in a
dose-dependent manner and then this reaction
is blocked in presence of the patients sera if
these contains neutralizing ADA.67 Readouts
will be different for varies assays (e.g. prolifer-
ation, apoptosis, or mRNA expression), and
the design needs to reflect the agonistic or
antagonistic character of the BP. One example
for a recently developed cell-based technique is
the luciferase reporter gene-expression assay.
In this method a cell-line is used in which a
firefly luciferase gene is coupled downstream
to the promoter region of the target of interest
lying downstream of the receptor stimulated by
the drug. In case NAbs are present in the
serum of the patient, they will interfere with
e.g. a blocking BPs such as a TNF-antagonist,
which consequently will result in a higher
luciferase activity induced by added soluble
TNF.69 Whatever system is used to study NAbs,
an extensive validation is required to acquire
reproducible and reliable analyses for clinical

routine. As cell-based assays are time consum-
ing, attempts to replace these assays with non-
cell based competitive ligand-binding assays to
study the neutralizing capacity of ADAs are
considered for some of the BP.67

Examples of techniques currently
used in hemophilia, multiple
sclerosis, rheumatoid arthritis and
Crohn’s disease 
The inhibitors in HA are predominantly

measured by the Bethesda quantitative assay
and the Nijmegan assay. In both techniques
the residual factor VIII activity is quantified
after mixing a patient plasma sample with
plasma containing a standardized defined
amount of factor VIII.70

Binding and neutralization assays are subse-
quently applied to detect ADAs to IFNβ in
patients with MS. Direct ELISAs are most com-
monly used in the first step to detect BAbs pres-
ent in the serum of patients,71 although bridg-
ing- or double antigen ELISA techniques have
been recently described.72 However, these
assays detect ADA in up to 70% of the patients
which does not necessarily reflect their clinical
relevance. Therefore several cell-based bioas-
says have been developed to determine the
neutralizing capacity of BAbs. The most widely
used techniques study the inhibitory effect of
IFNβ in the presence of patient sera on the
viral cytopathic effect (CPE),71 or the mRNA or
protein expression of the IFNβ responsive gene
myxovirus resistance protein A (Mx1).73-75

In patients with MS or CD natalizumab ADA
is detected with a bridging ELISA screening.
Serum samples that are tested positive for anti-
bodies can further be evaluated regarding their
neutralizing capacity in a cell-based blocking
approach.76,77 However, due to a high concor-
dance rate between the two assays, only the
bridging-ELISA step is used in clinical routine.77

So far ADA testing is not integrated into clin-
ical routine for treatment of RA or CD with anti-
TNF-antagonist, mainly because NAbs have not
yet consistently been associated with LOR.
Experimental ADA-testing includes ELISA and
RIA methods to screen for ADA (Table 1). Most
of these tests also include studying drug levels
in parallel to assessment of the functional rele-
vance of ADAs.11 Recent cell-based assay such
as reporter gene methods are currently evaluat-
ed regarding their predictive value for LOR.69

Prediction and prevention of
anti-drug antibody formation

In drug development, measures to predict
and prevent immunogenicity of a new com-
pound have been developed. Attempts to lower

the immunogenicity for e.g. IFNβ variants by
the elimination of an immune-dominant epi-
tope have not yet been successful.78 However,
many improvements in drug formulations have
efficiently reduced the immunogenicity of
IFNβ.79 Other strategies have been to reduce
the aggregate formation, with as simple
approaches as improved storage and handling
of the protein product by clinicians and
patients.25

For selected immunogenicity studies ex vivo
cell assays, non-human primate, or transgenic
mouse models are used.80 Main goal in these
models is to be able to already preclinically pre-
dict the effect of protein sequence, route of
administration, or concomitant medication on
immunogenicity, and the clinical relevance of
ADA-formation.19 Furthermore, animal models
are useful tools to further elucidate the mech-
anisms of ADA-induction.80 The analysis of
expanded T-cell libraries,81 and transgenic
mouse models for human HLA, currently
explored to predict epitopes for efficient vac-
cines,82,83 are promising recently developed
tools to predict immunogenicity. Ex vivo stud-
ies include the quantitative analysis of the
CD4+ T-cell repertoire regarding specificity to
the therapeutic agent.84

To predict the risk of ADA-formation in the
individual patients treated, genetic analyses
might be promising future approaches. Other
biomarkers include e.g. phenotyping the T and
B cells as well as DC subsets and future studies
will show the prediction value of these pheno-
type characterizations for ADA-development. 

Strategies to deplete persisting
anti-drug antibodies

Antibody concentrations can be reduced by
plasma exchange or immunoadsorption.9 In
conditions where the LOR is associated with
fatal consequences and long-term therapy is
required - such as in HA - strategies aiming to
induce tolerance to the BP have already been
developed. High doses of factor VIII are given
over several months to induce tolerance, a
principal named induced immune tolerance
therapy (ITT).85,86 Future approaches, so far
mainly tested in HA patients, aim to deplete
persisting ADAs and include monoclonal anti-
bodies against IL-17 or IL-17 receptor,87 the T-
cell co-stimulatory molecule B7,88 the B-cell
surface marker CD20,89,90 the T-and B-cell sur-
face marker CD52,91 or high-affinity anti-ido-
typic antibodies specifically designed against
the main immunogenic domains of a BP such
as factor VIII.92

Certainly, strategies to deplete ADAs will dif-
fer considerably for other diseases and treat-
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ments, when ADA formation is not a potential-
ly life-threatening consequence. Therefore,
ITT is not generally considered a practical
alternative for drugs that modulate the
immune system (e.g. IFNβ), although in a pilot
study of high doses of i.v. administration of
IFNβ the bioavailability could be restored.93

These studies, however, are compromised by
the fact that a proportion of patients sponta-
neously revert to negativity and also regain the
clinical effect of the drug, mainly seen in
patients with low-positive titers.75,94,95 Other
strategies, such as methylprednisolone alone
or in combination with azathioprine did not
have a significant effect on the titer courses in
small scale studies and short trial periods of
six months.96,97 Conversely, in the treatment of
CD with infliximab the co-medication with
azathioprine or methotrexate was associated
with a lower risk of ADA-formation.47,98

Conclusions

Development of ADA is an immunological
phenomenon that has to be taken into account
in modern medicine. In some fields this is a
well-established routine of treatment surveil-
lance, but not in others. The first obvious task
to improve the value of immunogenicity stud-
ies in clinical practice is a higher level of stan-
dardization of ADA testing methods. The dif-
ferent frequency of ADAs reported for different
BPs, and in particular for the same BPs in dif-
ferent studies (Table 1), illustrates the com-
plexity of measuring immunogenicity, compro-
mised by different trial design, study popula-
tions, assay techniques, timing of measure-
ments, mode of administration and concomi-
tant immunosuppressive medication.11,72,99

Measurement of anti-natalizumab antibodies
with one highly standardized method results in
comparable frequencies in post-marketing
studies across different populations.77

Nevertheless, also for this test methodological
improvements can be discussed, as a bridging
ELISA might not detect monovalent IgG4 anti-
bodies that potentially affect the pharmacoki-
netics of the drug in some individuals.72,100

Clearly, the clinical relevance of ADAs to BPs
differs across the clinical fields. Therefore, the
issues of prevention, prediction, and depletion
of ADAs have received varying attention. In
HA, where factor VIII treatment is a unique
therapy for a life-threatening disease, the
acceptable treatment risk might be higher, and
cost-intensive efforts are warranted to deplete
ADAs. Conversely, although IFNβ is still first
line treatment for patients with MS mainly due
to the positive safety profile, various new ther-
apeutic options currently become available.
Thus, not the depletion but rather the predic-

tion of the LOR due to immunogenicity is an
important aim in this field. Importantly, a con-
sensus has already been achieved that patients
with high titers of NAbs should be switched to
non-IFNβ treatments in several countries.101

However, due to a still existing lack of stan-
dardization in ADA testing protocols the cut-off
to define high titers of NAbs considerably vary
across different centers.72

In particular for anti-TNFα BPs, immuno-
genicity assays seem to produce controversial
data, only partly being able to correlate LOR to
the presence of ADAs. Techniques need to be
established which are able to detect the quan-
titative and qualitative appearance of ADA in
first hand and then secondly in what way this
correlate with LOR. Only then, clinicians can
decide based on a meaningful result if alterna-
tive anti-TNFα BPs could be an option, or a dif-
ferent class of BPs should be tried.11

Taking together, our examples from clinical
practice illustrate the need of further research
on immunogenicity against drugs across dif-
ferent fields in multicenter approaches to stan-
dardize assays and to help to predict LOR due
to immunogenicity. This could contribute to
prevent that a large proportion of patients is
exposed to an expensive, but ineffective and
potentially harmful therapy.
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