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Abstract 

Recent advances in evolutionary modelling
and alignment methodology enable alignment
of sequences with special features and incor-
porate structural and functional information.
However, our reviewing experience and a
recent study by Morrison1 suggest that these
newer methods are under-utilized (especially
in the communities of molecular systematics
and experimental biology), and the resulting
alignments are often curated manually. Most
often, no clear biological reasoning is invoked
during manual alignment; instead only aes-
thetic qualities are considered, as measured by
eye. Such subjectivity is not consistent with
core scientific principles. Although we recog-
nize that methodological problems still exist,
computerized alignment methods are current-
ly more realistic and can model a variety of
evolutionary mechanisms. We also suggest
future directions for the further improvement
of automatic alignment methods based upon
disconnects of existing methods with underly-
ing biological mechanisms.

Alignment as a statement of
homology

Multiple sequence alignment (MSA) is cen-
tral to standard bioinformatics pipelines for
comparative genomic and systematic analysis.
An alignment is ultimately a statement of
homology, so that each column in the align-
ment is thought to have descended from a
common ancestral state in evolutionary histo-
ry. This intimately links MSA to other down-
stream methods of evolutionary inference,
including phylogenetic tree construction. 

Evolutionary history and shared common ori-
gins of columns in an MSA are assessed by sim-
ilarity of characters of sequence features.
Indeed, dating back to Zuckerkandl and Pauling2

and the origins of molecular clocks, it was real-

ized that sequences diverge with time and that
sequence identity or similarity was an indicator
of sequence homology. From this, there is an
expectation that sequences of increasing evolu-
tionary distance will be increasingly divergent.
The rate and patterns of divergence will be dic-
tated by macro-evolutionary and population
genetic processes and protein function and
structure.3 A recent study quantifying the rela-
tionship between rates of sequence and struc-
tural divergence suggested that structure
diverges three to ten times more slowly than
sequence, as aspects of protein structure are
critical to protein function and are thus under
strong negative selective pressure.4,5 These con-
siderations have led to the development of align-
ment methods based upon patterns of sequence
divergence. While the first alignment algorithms
were tuned to align primarily protein data6,7

alignment algorithms have recently improved,
diversified and became better adapted to data
other than proteins, including DNA,8-11 coding
DNA,12-16 RNA,17,18 and to sequences with special
features, such as repeats, rearrangements, and
promoter regions.19,20 Further advances in
methodology provided bioinformaticians with
more data on structural and functional features
of proteins – and statistical methods were pro-
posed to incorporate these features in alignment
optimization algorithms.21-25 Moreover, recent
advances allow quality evaluation for each col-
umn aligned, providing valuable information for
upstream analyses.26-29

Sadly, our reviewer experience and a recent
survey1 suggest that state-of-art alignment
methods are not commonly used, but older and
less accurate algorithms and their implemen-
tations are still preferred. Many empirical sci-
entists recognize that the computational meth-
ods for sequence alignment are problematic,
and often use manual alignment to adjust the
alignment by eye. Overall less than 1% of sur-
veyed papers used the best performing meth-
ods like MAFFT,30 MUSCLE31 and ProbCons,26

while 50-75% resorted to the familiar
CLUSTAL,7 and manual intervention.1 Here, we
discourage manual editing of alignments, on
the basis of its lack of objectivity and repro-
ducibility. We urge the greater use of recent
alignment techniques, including those that
incorporate a priori knowledge where it is
available. We recognize the importance of opti-
mality criteria and suggest that manual align-
ments should be compared objectively. A better
understanding of recent methodological
advances and benchmarking will facilitate the
use of better alignment methods. The preva-
lence of the first generation program CLUSTAL
may be partially due to the fact that it is
embedded in many web servers.  

How do alignment methods 
compare?

One example of alignment is provided in

Figure 1. Many proteins involved in signal
transduction contain the Src-homologous SH3
domain of about 60 amino acids long. To
demonstrate the range of the differences
between alignment methods, a collection of
seven SH3 domain sequences were aligned
using six programs. Figure 1A shows the align-
ments (PDB identifiers: 2o9s-A, 1shg, 1gfc,
1pkt, 1srm, 1pnj, 2hsp). All sequences share a
core beta-barrel structure consisting of five or
six strands (yellow) arranged in two beta
sheets. The structures 1pnj and 1pkt also con-
tain an insertion with some helical structure
(green). 

The first alignment (Figure 1A) is a struc-
tural alignment from the program TM-Align32

as implemented in STRAP.33 There are several
points worth remarking on the structural
alignment. The sum of pairs score for the
structural alignment is negative, reflecting the
differences in alignment that one gets with a
structural vs. a similarity scoring criterion.
Additionally, the structural assignments for
identical amino acids are different in 1pkt and
1pnj. As a consequence the identical string
'KGSLVAL' in the insertion is not aligned. This
could be an example of the difference between
structural and sequence homology, the phe-
nomenon of structure sliding along the
sequence, where non-homologous positions
adopt structurally identical roles whereas the
homologous positions play alternative roles in
stabilizing structure.

Also shown are the alignments created with
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default settings of Clustal W, PRANK, MUSCLE,
T-COFFEE and MAFFT as implemented in
STRAP and the FSA alignment from the FSA
webserver. The differences in the alignments
in the gap regions are noteworthy. T-Coffee
and FSA create alignments with no gaps in the
secondary structure. Thus the highest scoring
algorithms also perform the best when align-
ing secondary structure (even without impos-
ing structural constraints to guide the align-
ment process).

Figures 1B and 1C show the reliability
assessment of M-COFFEE and FSA, obtained
from their respective webservers. Both of
these programs provide a color scale to assess
reliability from blue (low confidence in homol-
ogy) to red (high confidence in homology).
Judging from the differences in the align-
ments, the probabilistic reliability assessment
of FSA seems to provide a better view of the
variability of the alignment.

Benchmarking is used to perform automat-
ed assessment of the performance of different
alignment algorithms. Various benchmarking
datasets have been constructed to standardize
evaluation of protein alignment algorithms:
BaliBASE,34 HOMSTRAD,35 PREFAB,31 and
OXBench36 are based on 3D structural superpo-
sition. BaliBASE was the first large test set of
protein families and is comprised of manually
curated alignments, sorted into reference sets
based on sequence identity, length and
sequence characteristics. To avoid uncertainty
in the test set, only core blocks of reliable
aligned sequences are part of the reference
alignments. Although this increases the relia-
bility of the assignments, it avoids precisely
the parts of the alignment that are difficult to
align. Because of this problem, some bench-
marking datasets (BaliBASE and OXBench)
now include full length sequences as well.
There are also test data sets based on simulat-
ed data (IRMBASE).37,38 The benefit of simula-
tions is that the correct alignment is known
with no uncertainty. However, the relevance of
the simulated data to real sequence evolution
generates uncertainty of another kind. A
recent development is the use of a phylogeny
criterion rather than structure-based criteria
to assess alignment algorithm performance.39

In any case, the downstream use of the MSA as
well as the properties of the sequence data
may dictate the best performing algorithm. 

The reality and the choice of the
multiple sequence alignment 
optimality criterion 

The search for optimal alignment using
dynamic programming scales as a function of
alignment length N and the number of
sequences S (typically of O(NS) complexity),
and is intractable, especially for MSAs in the
genome-sequencing era. As a result, approxi-

mate algorithms or heuristic methods have
been developed to rapidly align larger numbers
of sequences. Of note are two classes of algo-
rithms, divide and conquer and progressive
alignments. Divide and conquer40 and related
methods like POA41 subdivide the sequence

into shorter fragments that are aligned and
then combined to generate a global alignment.
Progressive methods are the most prevalent
and align sequences as a combination of pair-
wise alignments weighted by an underlying
guide tree. The tree is traversed from leaves to

Article

Figure 1. (A) Alignments of SH3 domains with PDB identifiers: 2o9s-A, 1shg, 1gfc, 1pkt,
1srm, 1pnj, and 2hsp.The alignments were performed with a structural aligner, TM-Align
and a variety of alignment programs (Clustal W 2.1, PRANK, MUSCLE, T-Coffee,
MAFFT, FSA). Beta strands are yellow while alpha-helices are green. (B) Reliability
assessment of M-COFFEE. M-COFFEE provides reliability assessment as indicated by
color on a scale from blue (low confidence in homology) to red (high confidence in
homology). (C) Reliability assessment of FSA. FSA provides reliability assessment as indi-
cated by color on a scale from blue (low confidence in homology) to red (high confidence
in homology).
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root (post-order traversal of the tree), aligning
the more closely related sequences first and
continuing by using the information at the
child nodes to construct the partial alignment
at the parent nodes. Alignment methods may
differ in the manner in which the two sub-
alignments at child nodes are combined.
Common programs like Clustal,7 MUSCLE,31

and MAFFT30 use progressive alignment as the
underlying heuristic. More successful pro-
grams include an additional phase of iteration
to correct mistakes created early in the pro-
gressive algorithm. 

A critical part of all strategies is assessing
the quality of the alignment, typically based on
an optimality criterion that uses a character
substitution or similarity matrix and a gap
penalty scheme. The accuracy of an alignment
method inherently depends on its optimality
criterion, as it determines whether the align-
ment changes made by the heuristics may be
accepted or not. Good optimality criteria are
therefore critical. It has been pointed out elo-
quently by Kemena and Notredame42 that the
design of an optimality criterion should be
motivated by the biological processes responsi-
ble for generating the molecular data at hand.
Morrison1 argued that the mathematical func-
tions we optimize cannot ensure the conver-
gence to the biological optimum as many
underlying processes and features of real data
are not adequately modelled, such as in the
case of evolutionary scenarios with repeats,
inversions, and frequent gaps. This, together
with poor understanding of recent methodolo-
gies, leads researchers to resort to manual
alignment. 

Despite the inherent difficulties of model-
ling biological reality (no model is likely to
ever be true), much progress has been made to
improve alignment strategies and to make
optimality criteria more realistic. Compared to
a decade ago, we are now much closer to
reaching the biological optimum, based on rig-
orous statistical criteria incorporating func-
tional, structural or evolutionary views on
alignment.42 Relatively recently, pair hidden
Markov models (HMMs) were applied to MSAs.
Thanks to posterior decoding, where the most
likely hidden state when an emission occurs is
selected, HMM-based methods may incorpo-
rate more complex alignment scoring
schemes.26,27

We note that defining the biological opti-
mum may be very challenging. Scientists with
different backgrounds (biochemists, evolu-
tionary biologists, structural biologists, bio-
physicists, population geneticists, etc.) are
likely to define distinct and non-overlapping
biological optima. Ultimately, however, they
are all describing biological processes that
reflect descent from a common ancestor.

Indeed, such a discussion has already been
broached with the suggestion that the best

alignment for optimizing the evolutionary sig-
nal (phylogeny-driven) may not be the same as
the best alignment based upon structural crite-
ria. The use of structural criteria as bench-
marks in multiple sequence alignment may
then bias towards alignments optimized for
structure and energetics, but which may not
always reflect evolutionary history to the
extent that sequences can slide through struc-
tures during evolution to find alternative ther-
modynamic optima.39 The complex relationship
between protein thermodynamics and popula-
tion and macro-evolutionary processes includ-
ing selection will need to be considered in gen-
erating an optimal scoring function as struc-
tural alignments will contain evolutionary
information that is lost at the sequence level.43

Parsimony, homoplasies, 
and alignment 

Manual editing of a computed MSA typically
involves an even further minimization of the
number of gaps and mismatches by eye. This is
usually justified by a classical parsimony argu-
ment, but such practices disregard the under-
lying biological process, which may involve
high degrees of complexity. While the comput-
ed alignments often are not the most parsimo-
nious, evolution may not have generated the
most parsimonious patterns of sequence diver-
sity in aligned blocks.3,44 Treating homoplasies
as alignment mistakes excludes the possibility
that a complex underlying process may have
generated this pattern. To describe the inher-
ent complexity of observed data, even parsimo-
ny methods attempt to include extra layers of
complexity.45

Note that parsimony is not inconsistent with
the presence of homoplasies. The distribution
of observed patterns is defined by the underly-
ing process, which generates data. An align-
ment with frequent gaps and homoplasies may
well be the simplest description of data given
the heterogeneous process resulting from an
interplay of different evolutionary forces acting
on molecular sequences (such as selection,
recombination, compensatory changes, gene
conversion, and composition biases in adapta-
tion to the environment). It is a mistake to
assume that aesthetically parsimonious pat-
terns achieved by manual editing are represen-
tative of the true simplicity, without a better
knowledge of the underlying biological process.
Longer alignments are often more biologically
meaningful than shorter and more parsimo-
nious ones,10,46 but would have been almost
impossible to achieve by manual editing.

Three additional reasons for not
trusting manually edited alignments 

While it is hard to imagine accounting for
complex biological forces in a manual align-
ment procedure, the alignment programs

attempt to model the underlying biological
process and use formal criteria to score the
resulting alignments. While it is easy to under-
estimate the complexity of the alignment prob-
lem (especially for similar sequences), in com-
puter science it has been long known as an NP-
hard problem.47 The likelihood of manually
making “sensible” changes to an alignment
rapidly decreases with the increase of number
and the length of sequences to be aligned. But
even for datasets of a manageable size, an
important question is what we assume to be
“sensible”. The subjectivity of the manual
alignment editing is one major pitfall that is
inconsistent with doing proper science.
Alignment algorithms use objective functions
to evaluate and compare candidate align-
ments. Alignments obtained through subjec-
tive minimization of homoplasies without rely-
ing on an optimality criterion, are based on
prejudices and open the way for introducing
researcher-specific biases. 

From this follows another important pitfall
of manual alignment editing.  The lack of sta-
tistical criteria to compare candidate align-
ments results in the inability to show that the
manually edited alignment is significantly bet-
ter than the one produced automatically.
Finally, manual alignment curation is non-
algorithmic and therefore not reproducible,
defying one of the most important scientific
criteria. 

At the very least, accepting certain align-
ment alterations has to be done after: i) a sta-
tistical comparison of the manual alignment to
other candidate alignments (for example, pos-
sible with M-coffee;48 also38,46,10 ii) the procedure
for making the alignment changes has to be
rigorously described and based on objective
biological knowledge (for example, functional,
active sites, structure elements) rather than
on a parsimonious gut feeling. 

One simple way of automatically curating
alignment quality is to remove ambiguously
aligned regions from subsequent phylogenetic
analysis, which can be done with the popular
program Gblocks.49 However, the effect of
applying Gblocks on downstream tree accuracy
is controversial.39,50 Strategically, if Gblocks is
removing regions that are improperly aligned,
then this is a band-aid covering the need for
better models that produce better alignments.
Alternatively, if Gblocks is removing properly
aligned, but rapidly evolving regions, it is then
introducing a bias to downstream analysis, as
the most conserved sites may not be those that
produce the strongest phylogenetic signal.51

The four disconnects in alignment
methodology

Recent years have seen significant
advances towards more biologically realistic
alignments (see, for example, the review of
Kemena and Notredame 2009).42 Still, there
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are several apparent discrepancies between
the optimality criterion and the underlying
biology; and a number of emerging independ-
ent trajectories were proposed in the literature
to treat each such disconnect. The first discon-
nect involves the evolutionary process that pre-
sumably has contributed to generating the
sequences in hand. However, optimality crite-
ria used for scoring alignments are not based
on evolutionary models, unlike the likelihood
function in phylogenetic analyses that
requires an explicit evolutionary model. This
results in a disconnect: the alignment scoring
function does not reflect the evolutionary
process that contributed to generating the
data. As better character substitution models
are developed, they should also be applied to
alignment optimization (see discussion below).
However, our understanding of processes driv-
ing indel-formation is still poor, bringing us to
the second disconnect: the lack of adequate
indel models in alignment optimization. Gap
penalties currently used by alignment methods
are fundamentally different from the underly-
ing probabilities of observing gaps of different
lengths.52 A uniform distribution of indels is
usually assumed along the length of a
sequence, which is also very unrealistic.53-55

Modelling indel distributions and their evolu-
tion as part of an explicit evolutionary model is
limited56,57 and is currently not widely applied to
alignments.  

The third disconnect relates to the general
lack of integration between population genetic
and interspecific models. Indeed it has been
shown that population genetics parameters
like effective population size shape the inter-
specific patterns, and so affect the probability
of observing different types of substitu-
tions.43,58-60

Finally, the two competing views functional
or structural vs evolutionary defining criteria
for optimal alignment are currently disjoint:
each alignment method chooses one criterion
ignoring the other, and so creating a fourth
disconnect. While the evolutionary view of
alignment is most common, for proteins or
RNA both indels and substitutions occur in the
context of a folded three-dimensional struc-
ture, where their effects on ΔGfolding will affect
their likelihood of observation, also dependent
upon the unknown relationship between
ΔGfolding and organismal fitness. Another prob-
lem rooted in the structural underpinnings of
sequence evolution is the reliance of
sequence-based alignment on substitution
matrices with an underlying assumption of
site-independence for a process that is inher-
ently site-interdependent. Approaches that
consider and combine sequence-based and
structure-based criteria may be a promising
step forward. What has not yet been accom-
plished is integration of ΔG calculations into
sequence-based models for the purposes of

alignment. With different underlying assump-
tions, this has been discussed in the context of
fitness.61-64

Functional sites and sites that are critical to
folding, such as active site and binding cleft
residues that are absolutely conserved and cys-
teines responsible for structural disulphide
bridges, can be pre-annotated and treated as
anchors, providing a functional basis for align-
ment.

Better substitution models for an optimali-
ty criterion

Over the last decade much work has been
done to improve models of molecular evolu-
tion. While BLOSUM65 and PAM66 matrices are
still habitually used, it is time for the align-
ment methods to capitalize on the wealth of
models available and include them in popular
alignment packages. For protein-coding data
the use of empirical codon matrices improves
the alignment accuracy and has been imple-
mented in alignment procedures.10,12,14 For pro-
tein or RNA data, the use of more realistic sim-
ilarity matrices should equally result in better
alignments (eg, see RNA-specific matrix,67

general protein matrix LG,68 or organism-spe-
cific mtArt,69 mtREV,70 mtMam,71 rtREV72). Due
to among-site heterogeneity, structure or con-
text-specific matrices have a strong potential
to improve the alignment accuracy (for exam-
ple, matrices for transmembrane alpha-
helices,73 for combinations of secondary struc-
tures and solvent accessibility,74-77 or for local
sequence-structure contexts78). These matri-
ces give advantage in homology searches
(especially when searching for distant homo-
logues), but are poorly utilized for MSA.
Biegert and Söding (2009) derived sequence
context-specific amino acid similarities that
rely on a library of sequence contexts, instead
of relying on a single substitution matrix.79

Based on this idea, a context-specific exten-
sion of BLAST (CS-BLAST) achieves a two-fold
sensitivity improvement. The same idea poten-
tially could help to improve alignment accura-
cy for distant sequences. In a related develop-
ment, HMMs were successfully applied to
describe and study the evolutionary hetero-
geneity of biological processes in a genomic
sequence. For example, in application to G-pro-
tein-coupled receptors, models with hidden
site classes were used to study the dimeriza-
tion mechanisms.80 Embedded within the phy-
logeny-aware alignment algorithm, a two-level
HMM accounts for a number of heterogeneous
classes describing distinct evolutionary
processes, such as different codon positions or
slow and fast evolving sites.10

Better indel models 
The distribution of indels and their lengths

is clearly dependent on several factors:
sequence divergence, location within the

sequence, proximity to other indels or func-
tionally important regions, organism-specific
factors. Insertion and deletion occur most com-
monly in loop regions of proteins, where they
are less likely to cause steric problems (geo-
metric clashes) in protein folding. Even in the
absence of a solved structure, secondary struc-
tural information can be considered in align-
ment methods as different amino acids have
different propensities to occur in loop regions.

While typical character substitution models
assume a reversible and stationary Markov
process at little price, for indels such assump-
tions are clearly unrealistic.81,82 A simple model
of affine gap penalties83 is most frequently
used, because few satisfactory and computa-
tionally tractable alternatives have been pro-
posed. The choice of penalty parameters is
rather arbitrary in practice (resorting to
default values in most cases), although the
choice of substitution matrix and gap penalties
may be optimized.84 While the indel length dis-
tribution is commonly described by a geomet-
ric (exponential) distribution, empirical stud-
ies suggested computationally more demand-
ing solutions, such as the Zipfian distribution85

or a mixture of four exponentials.86

Despite the difficult task, recent work on
indel treatment for sequence alignment should
not be underestimated. Pair-HMMs6 and simi-
lar models such as transducers87,88 were pro-
posed to make modelling of indels more realis-
tic. While Gotoh’s gap penalties and the TKF92

evolutionary model57 may be equivalently mod-
elled by a pair-HMM, the probabilistic frame-
work allows additional sophisticated modifica-
tions to modelling indels. For example, the
“long-indel” model is an extension of TKF91

which allows indels of arbitrary length. The
“long-indel” was shown to outperform both
TKF models in sequence alignment and may be
extended to a non-reversible process.82

Alternative models (for example, exponential
decay and extending the standard Markov
process to include indel rates) were proposed
to describe non-reversible time-dependent
indel evolution and applied to gene finding.89,81

However, further methodological advances
are required to make these recent models com-
putationally feasible for MSA inference. In a
more practical development, using more real-
istic bi-phasic gap penalties as in ProbCons26

(gap-extension penalty is higher for shorter
gaps) was shown to increase alignment accu-
racy. The most recent attempt to improve indel
treatment in sequence alignment, with the
aim of avoiding penalizing single insertion
events multiple times, proposed to distinguish
between insertions and deletions rather than
treating them together. This ‘phylogeny-aware’
algorithm is implemented in the program
PRANK, which relies on a tree to identify indel
regions as insertions and deletions and treats
them as such in the subsequent alignment
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building process. PRANK has been shown to
outperform implementations of other algo-
rithms in analysis of biological data.39

‘Phylogeny-aware’ alignment has the potential
to overcome the difficulties in aligning repeat
regions identified as problematic by Morrison.1

Simultaneous estimation of alignment and
phylogeny

Most alignment methods rely on a guide tree
and thus may be affected by using a “wrong”
tree to guide the alignment process. On the
other hand, phylogenetic inference is typically
conducted for a given alignment, and align-
ment errors may have a downstream effect on
the accuracy of the inferred tree.90 Methods
have been developed that enable the use of
evolutionary criteria in an iterative or simulta-
neous assessment of alignment together with
the phylogenetic tree.29,91-94 For example, the
POY software95 makes this assessment based
upon a parsimony score. Statistically more rig-
orous developments include methods like BAli-
Phy,92,96 StatAlign97 and BigFoot,98 which are for-
mulated in a Bayesian framework, include
models of indel evolution (TKF and exten-
sions), and use simulated annealing99 or
MCMC to jointly sample posterior distributions
of alignments and trees (eg, see Table 1). As a
result, such methods are computationally
demanding and currently cannot be used for
large datasets. 

Consequently, it appears tempting to use
approximate schemes such as the iterative
approach of Saté,91 which at each step of the
iteration attempts to improve the alignment
and the tree using the best alignment algo-
rithms and ML tree estimation by RAxML.100

Such an approach however is controversial
since the tree-building step has no indel model
and thus will introduce biases to further itera-
tive steps, especially for divergent sequences. 

Overall, the success of alignment-phylogeny
co-estimation relies not only on the ability to
properly explore the joint tree-alignment space
but also on the underlying models of character
and indel evolution. However, these are similar
models that are being used for the assessment
of phylogeny, indicating the need for better
models, especially in the placement of indels
and integration of thermodynamic considera-
tions. Improved models will then not only
improve MSA inference, but also contribute to
more accurate phylogenetic tree construction.

Manual alignment vs. the need for
better models and methods 

Here we suggested that manual alignment
as commonly practiced suffers from being ad
hoc and is often based upon faulty assump-
tions about the nature of evolutionary process-
es. This also has been emphasized in an
appraisal of manual alignments by Giribet101

who compared manually edited alignments

from different manual-alignment experts.
Indeed, the complexity of the alignment prob-
lem is easily underestimated when very simi-
lar sequences are aligned. But for low levels of
divergence, the best alignment programs per-
form very well. For deeper divergences or larg-
er samples, the prospect of ‘successful’ manu-
al curation rapidly decreases, and in the
genomics era, curated alignments rapidly lose
their appeal. For “difficult” datasets (diver-
gent, with long sequences or many taxa) cur-
rent automatic approaches are unlikely to be
outperformed by manual editing. Greater use
of prior knowledge about the data (like 3D
structure, knowledge of active sites, a known
pattern expected for a protein domain, etc.)
facilitates alignments of greater accuracy that
cannot be achieved by hand, but has to be
incorporated in the optimality criteria. 

Clearly, better models and methods are
needed (and appear to be on their way). In the
meantime, a systematic assessment of
assumptions and manual evaluation of the
results of different approaches, including pro-
gressive and structural alignment with a clear
criterion to integrate the two lines of informa-
tion appears to be the best way forward. For
large-scale approaches, this is clearly not pos-
sible and inference should be made with an
awareness of any methodological weaknesses
or faulty assumptions. 

Concluding thoughts
Even the best MSA algorithms produce a

certain alignment error, which rapidly increas-
es with divergence. Concerns about alignment
accuracy may be better treated if scientists
understand that any alignment carries an ele-
ment of uncertainty. For example, Aurahs et
al.102 is one of very few studies to consider sev-
eral candidate MSAs to infer trees. The uncer-
tainty in MSA inference has to be taken into
consideration when making strong conclu-
sions based on one alignment, as equally opti-
mal alignments may lead to different infer-
ences. This calls for a rigorous framework for
comparison of candidate alignments, as it is
often done with phylogenetic trees.103 Simult -
aneous Bayesian inference of the alignment
and tree provides one way of dealing with such
uncertainty where a distribution of alignments
and trees is the focus rather than single infer-
ences, obtained in a frequentist framework.

The choice of alignment algorithms should
be guided by the type of data, including its size,
special features and availability of structural
and functional information (Table 1). Applying
several suitable alignment algorithms and
then using a meta-method to evaluate candi-
date alignments currently is the best option for
navigating through the vast space of possible
alignments.

Better models that link the molecular and
evolutionary mechanisms underlying the sub-

stitution and indel processes to MSAs are in
their infancy, but the field is developing.
Currently, inference can be made using exist-
ing computational approaches and thoughtful
considerations of underlying assumptions.

It is exciting that alignment and underlying
models are re-emerging as hot topics in bioin-
formatics. The renewed interest in alignment
methodology is caused by growing demands for
the analyses of large-scale and genomic data.
The recent method FSA can align thousands of
long sequences, while using a pair HMM to
approximate the indel process on a tree and
pairwise alignments based on the sequence
annealing algorithm (Table 1).27 Advances in
sequencing technologies have allowed the
rapid sequencing of full genomes, which in
turn is driving advances in methodology for
aligning and assembling short reads104,105 and
for multiple whole genome alignment (eg, see
Table 1; MLAGAN,106 Enredo and Pecan,107-109

Ortheus110). Despite a number of recent algo-
rithmic advances the genomics alignment field
is still in its infancy, presenting succulent
challenges, yet to be solved. 
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