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Abstract 

Species trees are an essential tool in conser-
vation and evolutionary biology. In phyloge-
nomics, not only is data choice (e.g. using
unlinked orthologs rather than paralogs) an
important systematic consideration, but the
choice of phylogenetic algorithm is also impor-
tant. Since individual gene phylogenies can
differ from the true species phylogeny, new
methods have been proposed for species tree
estimation using multiple unlinked genes.
Improvements in genome sequencing tech-
nologies have increased the amount of data
available to researchers and this has increased
the utility of multi-locus species tree inference
methods. The Bayesian methods BEST and
*BEAST that incorporate a coalescent model to
account for gene tree and species tree conflict
offer promising advances in species tree infer-
ence directly from DNA sequences. Methods
that infer species trees from gene trees rather
than directly from sequence data such as
STAR, STEAC, NJst and the likelihood method
STEM have been recently developed as compu-
tationally efficient alternatives. Bayesian con-
cordance analysis, which has been shown to
perform well when horizontal gene transfer is
the cause of gene tree and species tree con-
flict, is also discussed. Furthermore, methods
for species delimitation including a non-para-
metric species tree inference method that does
not require a priori species assignments can
remove subjectivity from species delimitation.
Here, I review the assumptions, required
inputs, and the performance of these methods
under simulation and in recent empirical stud-
ies. Researchers in many disciplines should
understand the methods available for phyloge-
nomic species tree inference in order to
enhance evolutionary and conservation stud-
ies.

Introduction

Species level phylogenies are essential to
answering many biological questions includ-
ing the analysis of the speciation process,1-2

species delimitation,3-5 community ecology
questions,6-7 and basic species relationships.8
Species level phylogenies are also used to

define management units9,10 which are of par-
ticular importance in the light of the current
global biodiversity crisis.11 Therefore, the
accuracy and confidence put into species trees
can have broad implications as these trees are
one of the best tools available for species
delimitation under the evolutionary species
concept2 and for modern comparative biology.12

It is essential that researchers utilize phyloge-
netic methods and increasing amounts of
genomic data in a biologically meaningful
manner.

Before the development of PCR and first
generation gene sequencing technology,
researchers relied on finding homologous
morphological characters that could be used to
infer phylogeny.2 Although such characters still
have their use today in systematics (see
review by Giribret13), there are limits to how
many morphological characters are available
for any given taxon. This is especially true for
organisms such as bacteria, morphologically
cryptic species, and for undistinguishable life
history stages (e.g. insect larva). Sequence
data have resulted in an explosion of phyloge-
nies for a breadth of taxa, but the tree of life is
far from assembled. It is evident that different
genes can have differing evolutionary histo-
ries which can cause individual alleles within
a species to be polyphyletic, or not share the
same genealogy as the species.14-15 Such gene
tree conflict (Figure 1) can be caused by intro-
gression, incomplete lineage sorting, and con-
flicting modes of selection and inheritance
(e.g. mitochondrial vs nuclear genes;15,16). For
this reason, there is a need to distinguish
between gene trees and species trees. 

The question of differentiating gene trees
from species trees has been a fundamental
issue for systematists since the advent of
multi-loci analysis. Although high throughput
sequencing has presented great opportunities
for data collection and has allowed for the
development of phylogenomics, this too pres-
ents easily overlooked issues including mis-
leading data (e.g. bias introduced by ambigu-
ous data and discordance between the most
likely gene trees and species trees;17,18-19),
gene choice (e.g. orthologs rather than par-
alogs;20), missing data17,21-22 and adequate
taxon sampling.23-24 Phylogenetic inference
algorithm choice is also of concern. New meth-
ods for inferring species trees with multiple
loci (Table 1) have recently been developed
and their properties, use, and accuracy war-
rant a thorough review. Here I review impor-
tant considerations for character and taxon
sampling in phylogenomics, the most recent
and promising methodological advances in
species tree inference and phylogenomics, and
how the algorithms have performed in simula-
tion and empirical studies to date. 

Character and taxon sampling
Many phylogenomic studies address hypothe-

ses of deep evolution along the tree of life,25-26

but questions about species and sub-species
relationships are just beginning to be pursued
under a phylogenomic framework.3,19,27-29 The
argument of whether increased taxon sampling
or increased character sampling will enhance
phylogenetic robustness has been a lively
debate in the systematic literature for years.
However, recent theoretical advances suggest
that the answer likely depends on whether the
lack of phylogenetic resolution exists at the
base of the phylogeny or at the tips. According to
Townsend and Lopez-Giraldez,24 increased char-
acter sampling is ideal when resolving the tips
of trees, which is more of an issue when looking
at species level relationships rather than deep
nodes. Furthermore, taxon and character sam-
pling design in conjunction with how recently
species level divergence took place can affect
species tree inference accuracy.30,31

Although genomic technology can provide
many genes for use in phylogenetic analyses,
care must be taken to ensure orthologs rather
than paralogs are used so as to not introduce
homoplasy into an analysis. For groups with
sequenced genomes, multiple databases exist
for the identification of orthologs (see
Altenhoff and Dessimoz20 for an analysis of
database search effectiveness). In model
organisms such as Drosophila, full genomes
for 12 species have been used to infer phyloge-
netic relationships.32
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For less studied groups such as many
macroinvertebrate taxa, genomic data are typ-
ically only available for a handful of taxa. For
non-model organisms, BAC libraries (genome
fragments sequenced with plasmid vectors) or
shotgun sequencing approaches can provide a
source of phylogenetically informative mark-
ers.33 Thomson et al.34 and Carstens and
Dewey3 showed BAC libraries are a reliable
source of primers for traditional PCR and gene
sequencing of phylogenetically informative
markers. PCR primers developed from such
genomic techniques do not appear to have the
functional breadth of so called universal
primers.28

Using a wide variety of unlinked orthologs
and multiple individuals per species is impor-
tant to capture differing gene evolutionary his-
tories within the genomes of any given
taxon.31 However, Townsend et al.19 found that
it may be better to sequence a smaller number
of fast evolving loci rather than many fast
and/or slowly evolving loci using the species
tree inference methods BEST and *BEAST
(discussed below); this is in notable contrast
to the standard phylogenomics paradigm of
using as much sequence data as possible. 

One issue with phylogenomic studiesis that
many include missing data.25,26,35 The impor-
tance and effects of missing data on phyloge-
netic studies has been a point of lively debate
for years, but exactly how such missing data
affects species tree inference methods dis-
cussed below has yet to be studied.36 Modern
phylogenomic studies commonly have missing
data, and for this reason an in-depth analysis
of how missing data affects species tree infer-
ence algorithms should be pursued with vigor. 

Species tree estimation algorithms
Traditional phylogenetic algorithms such as

Maximum Parsimony (MP), Maximum
Likelihood (ML) and Bayesian Inference (BI)
are widely used and thoroughly tested methods
for phylogenetic gene tree inference. A major
criticism of these methods is that they may
only capture gene history and not the true
species history. In fact, these methods can be
positively misleading when applied to multilo-
cus data giving statistically supported but
incorrect phylogenies. This can occur because
genes from different genomic regions can
have genealogies that are statistically more
likely than the true species tree.18 This prob-
lem may be exacerbated when the focus of a
phylogeny is species level relationships, since
full coalescence is unlikely to have occurred for
all genes at shallow evolutionary time
scales.15,37

Species tree estimation methods that utilize
multi-locus data have been advanced as practi-
cal methods for inferring species trees from
gene trees, but these methods have not been
as extensively vetted as traditional methods of

gene tree inference. Coalescent based meth-
ods (e.g. BEST, *BEAST, and STEM) all have
the underlying assumption that the only
source of incongruence between gene trees is
the result of incomplete lineage sorting; this
assumption may not always be realistic and
other non-coalescent model based methods
should be considered. Numerous methods
have been developed for species tree inference
(Table 1), but this review focuses on a subset
of the most used and promising methods for
estimating species trees within a phylogenom-
ic paradigm. 

The Bayesian methods, BEST (Bayesian
Estimation of Species Trees)38 and *BEAST,39

use multiple genetic markers, a model of
molecular evolution (e.g. general time
reversible model for DNA or WAG for protein
data), and the multispecies coalescent model40

to infer a species tree. The user provides
sequence data as the input, models of molecu-
lar evolution for each loci, standard priors for
Bayesian phylogenetic analyses, and species
designations. BEST also requires a prior prob-
ability value for population size (θ) and a
defined outgroup. These methods utilize a
Markov chain Monte Carlo (MCMC) algorithm
where gene trees and the species tree are
updated in each iteration39,41 The species tree
is estimated using the majority rule consensus
tree of trees sampled after the algorithm
reaches stationarity. BEST estimates branch
lengths as the mean of the estimated posterior
distribution, and *BEAST calculates branch
lengths as either the mean or the median of
the estimated posterior distribution depending
on user input.38,39 Support values in terms of
clade posterior probabilities are given and both
programs estimate divergence times.38,39

A likelihood method for species tree estima-
tion that utilizes a coalescent model, STEM
(Species Tree Estimation with Maximum
Likelihood),42 uses individual gene trees, cal-
culated from any standard phylogenetic
method, as input rather than DNA sequence
data. STEM assumes these gene trees are

inferred without error, which may be unrealis-
tic. As in BEST and *BEAST, STEM assumes
that gene tree discordance is produced only by
incomplete lineage sorting. The user must pro-
vide θ which is constant throughout the analy-
sis. This is in contrast to BEST where θ is esti-
mated across the Bayesian algorithm based on
the prior probability. A caveat of this method is
that support values for the species tree are not
given, but this could be addressed using boot-
strap techniques. 

The previously discussed methods assume
that incomplete lineage sorting in the coales-
cent process is the cause of gene tree discor-
dance, but in groups with potentially high lev-
els of horizontal gene transfer this assumption
may cause the methods to fail in finding an
accurate species tree. The non-parametric
Bayesian concordance analysis (BCA), as
implemented in BUCKy,43,44 does not make
assumptions for the cause of gene tree incon-
gruence. This method requires a sample of
trees from the posterior probability of a stan-
dard BI analysis of each locus. The user is
required to provide a prior value for gene tree
discordance (α). The concordance tree output
represents the species tree in that it consists
of the clades found with the highest amount of
genomic support as measured by concordance
factors.45 Nodal support is determined by a
concordance factor which is the percentage of
the genes included in the analysis that support
the clade.

Additional species tree inference methods
that are designed for efficient computational
times based on coalescent theory summary
statistics include species tree estimation
using average ranks of coalescences
(STAR;46), and species tree estimation using
average coalescent times (STEAC;46). Liu and
Yu47 developed an additional method that uses
average gene-tree internode distances and a
neighbor joining algorithm to compute the
species tree (NJst). All three methods were
designed to be more computationally efficient
than coalescent based methods that infer

Review

Figure 1. Gene tree vs species tree conflict. The large tree represents the species tree with
three individual gene trees (black, red, blue) inside of each species tree. (A) Gene tree and
species tree conflict due to incomplete lineage sorting.  (B) Gene tree and species tree con-
flict due to horizontal gene transfer and/or introgression. Gene branches not reaching the
tips of the tree represent haplotypes that were deleted from the species.
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species trees directly from sequence data.
STAR and STEAC require rooted gene trees
(i.e. with a defined outgroup) calculated with
any standard phylogenetic method for each
locus as the user input, whereas NJst can use
unrooted gene trees as the input. One shortfall
of these methods is that branch lengths are not
calculated. The outputs for these methods are
species trees, and nodal support can be
assessed for STAR, STEAC, and NJst using a
bootstrap analysis described by Liu et al.46 and
Liu and Yu.47

O’Meara53 developed a non-parametric
method of species tree inference (referred
herein as the O’Meara method) based on gene
tree parsimony that does not require species
designation to gene sequences a priori. Such a
method is ideal in that subjectivity of species
delimitation is removed. Theoretically, this
model attempts to find the species tree that
minimizes gene tree conflict on interspecific
branches while also minimizing excess genet-
ic structure across the tree.53 The output tree
assigns species designations and has branch
lengths, but no clade support values are given. 

The methods discussed above are by no
means an exhaustive list of all species tree
inference methods proposed. (Table 1 shows
additional methods.) However, they do repre-
sent what appear to be the most promising
methods based on recent comparisons using
both simulated and empirical data. Many of the
above methods have been used in applied
inferences of species trees using original
data.3-4,27,36,45,54,55

Algorithm performance
All of the above methods must grapple with

standard issues concerning molecular phyloge-
netic analyses. Heuristic methods for DNA
alignments56-58 are commonly used, but align-
ment uncertainty is still possible.58-59 Talavera
and Castresana60 showed that the removal of
ambiguously aligned positions can actually
increase phylogenetic signal when sequences
are not too short. The accurate alignment of
homologous DNA sequence positions is essen-
tial to any comparative genomic analysis (see
review by Kumar and Filipski61) and, therefore,
species tree inference. Researchers should be
careful to ensure the most accurate alignment
possible in any phylogenomic study.

In addition to DNA alignment, the choice of
the model of molecular evolution utilized for
each locus used in the above methods should
be considered (see review by Sullivan and
Joyce62). Poor model choice can lead to over- or
under-parameterization of data63 and a model
testing analysis (e.g. jModelTest;64 or
MrModerltest)65 should be performed for each
locus whether gene trees or DNA sequences
are the input for any given species tree infer-
ence algorithm. Furthermore, when choosing a
species tree inference method, researchers

should decide whether methods that use the
coalescent model,40 which assumes no hori-
zontal gene transfer or introgression, are
appropriate for their data. 

Many of the simulation tests that have been
carried out to explore the function and utility
of traditional Bayesian phylogenetic analysis
are likely to apply to BEST, *BEAST, and BCA as
they all incorporate traditional Bayesian phylo-
genetic analysis into their algorithms to cer-
tain degrees. Simulation studies have
expressed concerns about evolution rate pri-
ors17 and the use of uninformative priors in
Bayesian analyses66-67 and, therefore, the
choice of priors in any Bayesian framework
should be carefully considered. Furthermore,
whether posterior probabilities are a reliable
source of clade confidence and if alternative
measures would be preferable68 should be con-
sidered whenever estimating species trees
under a Bayesian framework. 

BEST has been shown to outperform BCA
and STEM36 when the assumptions of the coa-
lescent model are not violated, but not the
newer *BEAST method. Liu et al.69 analyzed
yeast (Saccharomyces) and Manakins
(Manacus) under the BEST framework. In the
yeast analysis, the authors conclude that mul-
tiple well supported gene trees may not be
enough for a well supported species tree
(although the BEST algorithm did give the
accepted species tree). BEST also gave a simi-
lar species tree to a previously published
Manakin phylogeny.69 This was in the light of
probable introgression events in the data set,69

which is a violation of the assumption of the
coalescent model that no gene flow occurs
after speciation. An empirical study of
Hawaiian flowering plants in the genus
Schiedea found well supported but different
inferred with BEST and traditional concatena-
tion approaches70 indicating some or all meth-
ods were positively misleading compared to
the true tree. This finding may be a result of
reticulate evolution in Schiedea and a violation
of the coalescent model’s primary assump-
tion.70

Recent studies suggest that at least under
certain conditions, BCA and *BEAST may be
better alternatives to BEST. Chung and Ané45

showed BCA, as implemented by BUCKy43,44

outperformed BEST when horizontal gene
transfer was the primary cause of gene tree
discordance, and it seems that this conclusion
may be extrapolated for *BEAST and STEM as
the presence of horizontal gene transfer vio-
lates the primary assumption of the coalescent
model. Furthermore, *BEAST was more accu-
rate under simulation than BEST in direct
comparisons with simulated data.39 In a study
on orioles (Icetrus), Jacobsen and Omland27

found BEST to be far too computationally
demanding for practical use, whereas *BEAST
performed well with identical data, although

incongruence between *BEAST, BCA and tradi-
tional methods was not well explained. 

Huang et al.54 found that the accuracy of
STEM decreases in data sets of recently
diverged species, and this is corroborated by
the finding of Leaché and Rannala36 that, as
the number of substitutions per site from the
root to the tip of the tree (T) decreases, so
does the accuracy of STEM for simulated data.
BEST does not appear to suffer from this prob-
lem.36 STEM will also inherently be less accu-
rate if the supplied gene trees are themselves
less accurate.36 Kabatko et al.71 found *BEAST
and STEM gave similar relationships of
Sistrurus rattlesnakes, but that BEST required
too much computational time for thorough
comparisons to the STEM and *BEAST trees. 

Liu et al.46 found STAR outperformed STEAC
in most scenarios except when substitution
rates between loci did not vary, and Liu and Yu47

found STAR and NJst to perform equally as well
in estimating the true species tree with simu-
lated data. All three methods have been shown
to require many more loci (50-100+;46,47) to
achieve accurate results than those used in
empirical *BEAST, BEST and STEM analy-
ses.3,24,27,71 No analysis has dealt with how
these methods perform when gene tree incon-
gruence is not entirely due to incomplete line-
age sorting. Under simulation and in empirical
analyses, BEST outperformed both STAR and
NJst47 Given this, and together with the findings
of other studies mentioned above, STAR, STEAC
and NJst are likely only appropriate when other
methods are too computationally demanding for
the data set of interest. 

Although the non-parametric method of
O’Meara53 has not been analyzed to the extent
of methods discussed above, it has great poten-
tial for genomic environmental sampling since
species designations are not required a priori.
This method was not always accurate when
tested with a variety of simulations, and the
computational time demanded when species
assignments are not fixed may be prohibitive
with large datasets.53 In many cases, this
method may not be the most effective since
many taxonomists have information, such as
localities of specimens and morphology, that
make a priori designation of species or sub-
species appropriate. 

Species delimitation with genomic
data

All of the methods discussed above are
appropriate in a phylogenomic paradigm as
they require many unlinked loci, and species
trees are integral to the application of a phylo-
genetic species concept for species delimita-
tion. As phylogenomics continues to shift away
from only studies of deep divergence to species
level relationships, the use of species tree
inference methods, and other methods to be
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developed in the future, will enhance species
delimitation, which is integral to the study of
biodiversity and conservation biology. 

Yang and Rannala5 developed two Bayesian
methods implemented in the program bpp for
species delimitation. The first method uses a
reversible jump MCMC algorithm and the
other uses a constant MCMC algorithm which
is designed to be more computationally effi-
cient. Both utilize a guide species tree to test
species boundaries under the biological
species concept. Although a species tree
(potentially inferred with any of the above
algorithms) must be provided as a guide tree,
these methods largely remove subjectivity in
species delimitation. SpedeSTEM,72 an exten-
sion of STEM, can also be used to indentify
evolutionary distinct lineages with a STEM
species tree and, therefore, help species delim-
itation. Furthermore, the O’Meara species tree
inference method53 does not require species
identification a priori to tree inference, but
rather infers them with species tree estima-
tion. Although computational problems with
the O’Meara method are noted above, future
development of a posteriori species delimita-
tion methods with little subjectivity that also
allow for horizontal ggene transfer could
become invaluable to microbial field biologists
and others interested in speciation of under-
studied groups. 

In poorly studied taxa, such as many inver-
tebrate metazoans, there is a need for BAC
library development or shotgun sequencing
projects to provide data for phylogenomic
analyses. Since they are understudied, these
taxa often have the least understood species
boundaries and would benefit the most from
species tree estimation methods that can help
in species delimitation. I argue that major phy-
logenetic research programs should aim to
develop shotgun sequencing libraries for
primer development in traditionally understud-
ied taxa so species trees can be accurately
resolved and used for species delimitation.
Since management decisions are based on rec-
ognized species boundaries, there is a need to
apply new phylogenomic species tree and
species delimitation methods to understudied
groups, particularly given the global biodiversi-
ty crisis.

Conclusions

Resolving the tree of life is a major goal in
evolutionary biology. With high throughput
sequencing, the achievment of nearly full and
accurate phylogenetic resolution of the tree of
life appears possible in the future. However,
the advancements of sequencing technology
far outpaced the development of species tree
algorithms specifically designed for multi-

locus data. It is still unclear which species tree
inference method is the best for inferring the
true species tree and this may depend on
whether a pure coalescent process is the only,
or at least primary cause, of gene tree discor-
dance. The development of a well tested algo-
rithm that allows for both incomplete lineage
sorting and horizontal gene transfer will cer-
tainly help in determining true species level
relationships. Advancements towards remov-
ing subjectivity from the species delimitation
discussed above are also a step in the right
direction. Testing is still needed in areas con-
cerning missing data and how species tree
algorithms could handle non-DNA sequence
data (e.g. proteins and gene order) combined
with traditional sequence data. 
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