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Abstract 

CASS (coarse-grained artificial sequence
simulator) is a software package for simulat-
ing protein sequences with an explicit geno-
type-to-phenotype mapping that takes protein
structure and function into account. It is capa-
ble of reproducing many structure-specific
properties of protein sequence evolution, most
notably spatial and temporal variation in rates,
and has been used to investigate several
hypotheses about the influence of thermody-
namics on molecular evolution. The software
is implemented in object-oriented C++, is sup-
ported on Linux, and the source code is made
freely available under the GPL v3 license at
http://www.wyomingbioinformatics.org/Liberle
sGroup/CASS/.

Report

In the field of protein evolution, simulation
is an invaluable tool and simulation-based
approaches have been widely used. Examples
include testing the accuracy of ancestral char-
acter reconstruction,1 evaluating the statistical
power to detect selection,2 benchmarking
methods for multiple sequence alignment,3
and phylogenetic tree reconstruction,4 and
addressing the interplay between complex evo-
lutionary processes where biological functions
and selection can be controlled.

However, previous methods have not explic-
itly modeled the interdependence between
sites caused by selection on protein structure
and function. One class of methods is strictly
phenomenological, simulating the substitution
process without any connection between geno-
type and phenotype.5-7 Another type of
approach does include a weak genotype-to-
phenotype map, either site-specific and pre-
defined or a statistically assigned random
mapping.8-12 Sequence simulation in a number
of evolutionary contexts can be found in
Arenas M. and Hoban et al.13,14

Although some authors have recently mod-
eled the influence of structure on sequence
evolution,15-17 function is not considered and
models are not readily available as software. A
new biophysical model of sequence evolution

was developed that accounts for selection to
fold into a specific conformation and bind to a
specific partner, the structural consequences
of mutations, and the influence of population
size and mutation rate on fixation probabili-
ties.18 This work briefly describes that model
and its implementation in software, the
Coarse-grained Artificial Sequence Simulator
(CASS). 

In CASS (Figure 1), mutations occur on the
codon level and are translated to protein.
Protein sequences are then threaded through
a constant target protein backbone, and side
chains of mutated residues are re-packed
using either a coarse-grained approximation
or a slower all atom approach which is subse-
quently converted to coarse-grained space.19-21

The re-packed structure is then assessed for
changes in unfolding stability, misfolding stabil-
ity, and stability in alternative structures. The
stability scoring function takes into account
proper packing, van der Waals forces, salt
bridges, disulfide bonds, secondary structure,
and the hydrophobic effect. The target confor-
mation is compared to alternative conforma-
tions to ensure folding into a specified struc-
ture. This calculation uses a coarse-grained
structural representation to achieve the neces-
sary speed to evaluate the millions of sequences
produced during population-scale simulations
or phylogenetic inference procedures.

Function in the form of protein-ligand inter-
action is also modeled. Binding stability is
scored using the non-bonded interaction terms
of the folding model. Binding specificity is
modeled by selection against deleterious inter-
actions as well as selection for the native inter-
action. This approach generates functional
specificity and influences the substitution rate
at the binding interface.22

Finally, CASS allows modeling of the inter-
play between population size, mutation rate
and selection by simulating a population of vir-
tual organisms, each assigned a fitness value
based on folding stability and binding func-
tion.23 Organisms are propagated across gen-
erations at random, weighted by fitness, mim-
icking the opposing forces of genetic drift and
selection. Simulation of sequences over a phy-
logenetic tree is possible, and heterogeneous
processes are easy to accommodate. For
instance, selective pressures may be altered on
a clade-specific basis or mutation rates can be
different for different species. Generally, any
parameter can be changed on any branch of
the tree, and the use of this feature is
described in the accompanying documenta-
tion. With a script that describes the tree struc-
ture, the population along any phylogenetic
lineage can be simulated for a specified num-
ber of generations identically to that in a sin-
gle population in forward time.

As software, CASS has been implemented in
object-oriented C++ with modern memory-

management techniques, supported on Linux
distributions with a recent compiler (for exam-
ple, GCC v 4.3 or higher; the accompanying
website provides help with compilation and
installation). It is provided as a collection of
classes for representing protein structure, fold-
ing and binding stability scoring, and simula-
tion conditions. These classes can easily be
combined to create programs to, for example,
simulate sequence evolution or sample near-
native protein sequences. Such modularity also
ensures that it is an easy programmatic change
to alter the software to fit novel research ques-
tions. The software package comes with exam-
ple applications for common tasks and a variety
of models of thermodynamics, descriptions of
protein structure and fitness functions. An
example of the application of the method can
be found in a recent publication.18

The various components were tested to
ensure that they produce the expected output.
For instance, it was confirmed that simulated
DNA sequences sustain the same average
number of mutations as specified in the input,
and that protein sequences under no selection
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diverge at the rate expected from population
genetic theory.24 Although the simulations are
inherently time-consuming due to the com-
plexity of the model, substantial efforts were
made to optimize the algorithms involved. For
example, caching of the structural and ener-
getic consequences of previously encountered
mutations provides a speed-up proportional to
the number of simulated organisms in regimes
with realistically low mutation rates. The cal-
culation-memory tradeoffs mean that a typical
simulation (sampling on the order of 106 muta-
tions) will consume ~5 Gb of memory over a
modest runtime of ~48 hours on a modern
desktop machine.

The design of the approach was subjected to
four levels of biological validation. First, native
sequences that are known to fold into a given
structure should be well described by the
model and the model should generate
sequences that show specificity for the fold
they were evolved to fit. Second, evolved pro-
teins should retain a hydrophobic core and a
hydrophilic surface. Third, evolved proteins
should show heterogeneity of rates across
sites, with the hydrophobic core generally
evolving more slowly than the hydrophilic sur-
face. Lastly, the structure and function should
impose selective constraint due to evolved
metastability,25 resulting in dN/dS ratios simi-

lar to those known from comparative
genomics,26 i.e. approximately 0.2. As
described in Grahnen et al.,18 the method can
be made to show the last three levels of biolog-
ical validation, but has a tendency to evolve
homopolymer runs that appear not to be fold-
specific. The simulation approach is still an
active area of research and release of models
as open source software enables users to
change the force field or mutation acceptance
rules. Ultimately, the software is useful cur-
rently for applications involving evolutionary
dynamics and as a framework for future devel-
opments by the field.

Despite its simplicity relative to the compli-
cated reality of protein folding and protein-pro-
tein interactions,27,28 the model has been
applied to several problems in sequence evolu-
tion. For example, this approach has shown
how selection for not binding to deleterious
ligands could be a major driver in restricting
diversity of sequence and function at protein
binding interfaces.22 As one of the strengths of
the model is reproduction of spatial and tempo-
ral variation in rates of evolution, it was
recently used to study how selectively driven
shifts in function induce shifts in rates
(Grahnen et al., submitted), and how that com-
pares with neutral rate-shifting caused by
compensatory substitutions for folding stabili-

ty (dynamics described by Pollock et al.)29

The approach described above has many
other potential applications. Aside from the
benchmarking tasks of validating methods of
alignment and phylogenetic reconstruction,
one might use it to derive expectations of rates
of evolution in the many possible fates of gene
duplicates, test hypotheses about the effects of
population size and mutation rate on the evo-
lution of evolvability and robustness, charac-
terize the fit of novel models of sequence evo-
lution to data with known evolutionary history,
and answer questions about the nature of the
genotype-to-phenotype map for proteins. The
ability to simulate sequence evolution with a
high degree of biological realism, with soft-
ware such as CASS, should be of considerable
aid in developing novel inference methods and
asking questions about evolutionary processes
which cannot directly be observed.
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