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Abstract 

Alternative splicing, allowing multiple
mRNAs to be generated from a single gene, is
a major source of proteome diversity in eukary-
otes. Intron retention (IR), one type of alterna-
tive splicing, is the complete retention of an
intron in a mature transcript. IR is believed to
be associated with failure of the recognition of
weak splice sites flanking  introns. Mutations
in DNA sequences, including point mutations
and sequence insertions or deletions, can be at
the origin and evolution of IR. The strength of
weaker splice sites is the main cause of IR, but
some cis-regulatory elements and trans-regula-
tory factors can also play crucial roles in regu-
lating IR. IR can result in the regulation of
gene expression and may contribute to
increase protein diversity. IR has been shown
to occur in a variety of diseases, and it fre-
quently leads to aberrant splicing. 

Introduction 

Alternative splicing (AS), allowing multiple
mRNAs to be generated from a single gene, is
considered to be one of the main mechanisms
for regulating gene expression and augment-
ing protein diversity.1 For example, recent
studies indicated that more than 90% of
human genes are alternatively spliced.2,3
Moreover, while most genes are thought to cre-
ate only two alternatively spliced mRNA iso-
forms, many genes have the capacity to encode
a much greater repertoire of mRNA variants.1,4
The most dramatic example is the Dscam gene
of Drosophila melanogaster, which can poten-
tially generate a large number of mRNA iso-
forms via AS.5

There are several different types of AS
events (Figure 1).4,6 Intron retention (IR), one
of the least common types of AS, is the com-
plete retention of an intron in a mature tran-
script. Generally, IR is considered to be the
result of intron, rather than exon, definition
associated with failure of the recognition of
weak splice sites flanking short introns. IR is
the least characterized event of all AS types,
mainly because of the exclusion of this phe-
nomenon in many studies, due to the difficul-

ties to differentiate it from incompletely
processed transcripts.7 However, many discov-
eries have been made about IR in recent years,
including studies focusing human diseases.
Here, I review the most recent studies about
IR, and my aim is to provide some useful infor-
mation for future research in this field.

Models for mechanisms 
of intron retention

Splicing is ubiquitous in eukaryotes, which
removes introns from pre-mRNA and joins
exons together to form a mature mRNA. Exon
and intron recognition is achieved by two
mechanisms: exon definition (ED) and intron
definition (ID). ED defines pairs of splice sites
that flank the same exons, and ID defines pairs
of splice sites located on both ends of the same
introns (Figure 2).6,8 ED can identify relatively
short exon sequences (~400 nucleotides)
located within large intronic sequences, which
is the case for most of the exons in higher
eukaryotic cells.8,9 ID seems to be the ancient
mechanism that allows the recognition of
introns embedded in large exonic sequences,
which is the case for most of the introns in
lower eukaryotic cells.9

Intron retention (IR) is thought to be asso-
ciated with failure of ED and ID. There are two
proposed models.10,11 In the first model (Model
A) (Figure 3A), it suggests that both ID and ED
should be associated with IR. For the relatively
short introns in exon + intron + exon units,
Mode1 A is plausible, and supported by some
evidence.10,12 Model B (Figure 3B), suggesting
only the ED should be associated with IR and
failure in E to A or A to B complex transition
would lead to IR during the splicing process.11
For the relatively long retained introns, Model
B is more reasonable. In fact, the two models
do not contradict each other.

Prevalence of intron retention 

Although there are introns in the genomes
of most eukaryotes, AS is only prevalent in
multicellular organisms, and most of the stud-
ies were focused on higher multicellular
organisms. In fungi,13-17 as well as in the pro-
tozoa and in lower metazoans,18-20 the studies
indicated that AS are extremely rare. However,
in these organisms, the most prevalent type of
AS was found to be IR.20,21

Among higher multicellular organisms,
plants show relatively low levels of alternative-
ly spliced genes but high levels of gene fami-
lies,20-22 and this phenomenon could be
explained by the negative correlation between

AS and gene duplication.23 However, the plants
show high levels of IR events in AS. For exam-
ple, the studies revealed that IR is a major phe-
nomenon in AS in Arabidopsis thaliana, and
responsible for about 30% of AS events.24-26 In
the higher metazoans, IR is only a minor form
of AS. It has been shown that IR is the rarest
forms of AS events in seven analyzed species,26
including nematode (Caenorhabditis elegans),
fly (D. melanogaster), sea squirt (Ciona intesti-
nalis), chicken (Gallus gallus), mouse (Mus
musculus), rat (Rattus norvegicus) and human
(Homo sapiens). 

Origin and evolution of intron
retention

There are at least two possible origin and
evolution models of AS. The first model empha-
sizes the natural mutations of DNA sequences,
whereas the second emphasizes the evolution
of splicing regulatory factors. It is of great
importance to realize that the two models do
not necessarily contradict each other, however
the splicing regulatory factor model has not
received much experimental attention and
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remains a possibility only.6
Some evidence supporting the first model

suggest that there should be at least three pos-
sible ways leading to the origin and evolution
of IR. Firstly, mutations in DNA sequences,
including point mutations and sequence dele-
tions may enable IR (Figure 4A). Previous
studies showed that experimental mutations
of optimal splice sites lead to IR.9,10,12,27 In D.
melanogaster, an intronic partial deletion also
induced alternative IR at the Rieske Iron
Sulphur Protein (RFeSP) locus.28 Secondly,
natural point mutations could create weak
splice sites on the exonic sequences, thereby
promoting IR (Figure 4B). For example, in C.
elegans, there are 16 cases of retained introns,
which were created by intronization of exonic
sequences.29 Some studies revealed that some
mobile elements of other DNA fragments can
be integrated into a proto-splice site location of
thus creating introns,30-32 and it is possible
that some of these new introns may be
retained (Figure 4C). 

Regulations on intron reten-
tion

Strength of splice site
Generally, IR is associated with weaker

splice sites, and the strength of splice sites
often plays very important roles in regulation
of IR. Firstly, previous bioinformatic analyses
indicated that IR correlate with weaker splice
sites.33,34 In human, it was found that there is
a negative correlation between the strength of
splice sites and the frequency of IR.11 Secondly,
some experimental observations demonstrated
that changes of splice site strength have great
effect on IR. Studies with human genes have
shown that strengthening weak splice sites
flanking retained introns could cause an
increase in their removal levels,35 or complete-
ly abolish retention.36 Other studies also
revealed that weakening the strength of opti-
mal splice sites may lead to IR or cause an
increase in their retention levels.9,10,12,27

Cis-regulator and trans-factors
Cis-regulatory elements, including exonic

splicing enhancer (ESE), exonic splicing
silencer (ESS), intronic splicing enhancer
(ISE) and intronic splicing silencer (ISS), and
trans-factors also play important roles in regu-
lating IR. Bioinformatic analyses, have shown
that sets of cis-regulatory elements are associ-
ated with regulation of IR of many genes by
acting as binding sites for trans-factors which
promote (ESEs and ISEs) or inhibit (ESSs and
ISSs) splicing, and the distribution and densi-
ty of these cis-regulators plays an important
role in regulation of IR11. In bovine growth hor-

Review

Figure 1. Types of alternative splicing. Black boxes represent alternatively spliced exons,
and white boxes represent constitutive exons. The lines between the boxes represent
introns.

Figure 2. Mechanisms of exon and intron definition in the splicing process of mRNAs.6,8
(A) In exon definition (ED), SR proteins bind to exonic splicing enhancers (ESE), recruit-
ing U1 to the downstream 5' splice site (SS) and the splicing factor U2AF to the upstream
polypyrimidine tract (PPT) and the 3'SS. U2AF then recruits U2 to the branch site (BS)
which is a splicing signal located upstream of 3' end of the intron. So, the ED can form a
cross-exon recognition complex by placing the basal splicing machinery in the splice sites
that flank the same exon. (B) In intron definition (ID), U1 binds to the upstream 5'SS and
U2AF and U2 bind to the downstream PPT and BS of the same intron, respectively.
Therefore, ID selects pairs of splice sites located on both ends of the same intron.
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mone (bGH) pre-mRNAs, mutagenesis experi-
ments suggested that a purine-rich ESE is cru-
cial to counterbalance retention of intron D.36
In the FosB human gene, the polypyrimidine
tract binding protein (PTB) can regulate the
retention of intron 4.37 It was also shown that
the trans-factor Ptbp1 play a crucial role in reg-
ulating the retention of 3’-terminal introns of
many genes encoding important proteins
which are tightly regulated during neuronal
differentiation.38 In addition, a recent study
indicated that methylation and transcriptional
efficiency have influence on AS patterns,39 and
it is possible to find that methylation and tran-
scriptional efficiency is associated with alter-
native IR.

Consequences of intron retention

Intron retention regulates gene
expression  

During the expression of genes, the phe-
nomenon of IR is very common. A number of
studies indicated that up to 15% of human
genes present at least one IR events, and that
at least 22% of all informative IR events are

also present in the mouse transcriptome.40 IR
can insert premature stop codons (PTC) in
some mature transcripts that then be degraded
by non-sense mediated decay (NMD). NMD is
one of several RNA surveillance pathways that
ensure the fidelity of gene expression. So,
decreasing the level of mRNAs of given genes
is a function of IR. This phenomenon should
not be seen as a cellular waste because unus-
able transcripts are produced, but rather as a
means for the cell to regulate gene expression
at the post-transcriptional level in a precise
spatiotemporal manner.

Interestingly, IR could also regulate the
expression of genes by pathways other than
NMD. For example, it was revealed that intron-
retained transcripts of LY6G5B and LY6G6D are
not subjected to NMD, but form chimeric tran-
scripts with adjacent genes’ transcripts respec-
tively, and regulate the expression of two
genes.7

Intron retention and protein diversity
Often, IR affects mRNA transport to the cyto-

plasm and can insert PTCs in the mature tran-
scripts. However, the NMD is not the fate of all
mRNAs with retained introns. Some isoforms
of genes with the retained introns could be

transported into cytoplasm because of some
special elements. For example, the sequence
from Tap intron 10 could function as a consti-
tutive transport element (CTE) to allow export
and expression of a mRNA with a retained
intron.41 Some isoforms with retained introns
do not cause open-reading-frame (ORF) shifts,
so they could be translated into functional pro-
teins with biological activities. IR events of the
H3R (histamine H receptor) gene do not create
PTCs, but make several kinds of functional
proteins in mice and rat.42 In addition, the iso-
forms with retained introns that lead to PTCs
may also be translated into functional proteins.
In KCMNA1 gene of human, the retention of
intron 16 or intron 17a leads to PTCs in some
mRNAs, but these mRNAs would generate sig-
nificantly truncated BKCa channel proteins.43
In D. melanogaster, alternative IR at RFeSP
locus created a PTC, but the isoforms with the
PTCs could be translated into functional pro-
teins.28

Intron retention and disease 

AS is a major source of proteome diversity in
humans and thus is highly relevant to dis-
eases.44 IR has been shown to occur in a vari-
ety of diseases, and it frequently leads to erro-
neous splicing. Some studies have illustrated
how IR event can play a relevant role in sever-
al diseases. Aberrant IR was shown to cause
the dysfunction of ATRX, leading to acquired
alpha thalassemia.45 A new mutation of XPC
gene causing the abnormal IR of intron 12, has
led to the highest worldwide prevalence of
xeroderma pigmentosum in black Mahori
patients.46 A point mutation of POMGnT1 gene
leading to aberrant IR of intron 21, is associat-
ed with muscle-eye-brain (MEB) disease.47
Interestingly, it was found that normal IR can
inhibit the occurrence of illness. For example,
it was revealed that retention of intron 1 of Id3
gene would generate a novel Id3 isoform fol-
lowing vascular injury and inhibit lesion for-
mation.48

Conclusions 

IR is more common in lower metazoans,
fungi, protozoas and plants, but was found to
be the rarest AS event in vertebrates and inver-
tebrates. Generally, mutations in DNA
sequences can give rise to origin of IR. The
strength of splice sites, cis-regulatory ele-
ments and trans-regulatory factors play crucial
roles in regulating IR. IR has the potential to
regulate the expression of genes and increase
protein diversity. IR has been shown to play a
role in various diseases, and often lead to aber-

Review

Figure 3. Models for mechanisms of intron retention (IR). (A) In Model A,10,11 both
intron definition (ID) and exon definition (ED) are associated with IR. In this mode,
there are two steps in splice site recognition for short introns in short exon + intron + exon
units (~400 bp, close to the size limit for exon recognition). In step 1, all the exons are
defined, including the exon + intron + exon unit. Step 2 is alternative, if ID occurs in the
exon + intron + exon unit, the intron will be removed. Abrogation of this step will lead to
IR. (B) In Model B,11 only ED is involved with IR. In this mode, three steps are associat-
ed with splice site recognition for long introns in exon + intron + exon units. In step 1, all
exons are defined, including those flanking the intron to be retained. In step 2, flanking
introns are spliced. Step 3 is alternative, if the exons flanking the intron to be retained are
joined, the intron is removed; otherwise, skipping of this step by hypothetical failure in E
to A or A to B complex transition would lead to IR. Black boxes represent alternatively
spliced exons, and white boxes represent constitutive exons. The lines between the boxes
represent introns.
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rant splicing. 
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