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Forodesine – Preclinical Studies

Forodesine – the drug
Chemically forodesine is [(1S)-1-(9-

deazahypoxanthin-9-yl)-1,4-dideoxy-
1,4-imino-D-ribitol]. The agent is also
known as immucillin hypoxanthine
(immucillin H) or BCX-1777. This is a
potent inhibitor of the enzyme purine
nucleoside phosphorylase (PNP).

PNP – the enzyme
The enzyme PNP is responsible for

phosphorolysis of (2’-deoxy)guanosine
to the guanine nucleobase and (2’-
deoxy)ribose-1-phosphate.1 X-ray crys-
tallographic analyses suggested that the
mammalian enzyme is a trimeric struc-
ture that accepts only 6-oxopurine
nucleosides such as (2’-deoxy)guano-
sine and inosine, but not (2’-deoxy)-
adenosine or the pyrimidine (2’-de-
oxy)nucleosides as substrates.2,3 In addi-
tion to this selectivity, the substrate
preference of human and bovine PNP
is high, with Km values between 10 and
40 �M for inosine and dGuo, which
results in high phosphorolysis efficien-
cy (Vmax/Km = 2.56 for dGuo).1,4-6

Rationale for PNP inhibitors
The discovery that the rare genetic

deficiency of PNP in children, due to
mutations in the gene encoding for
PNP, causes profound T-cell lymphope-
nia provided impetus for development
of PNP inhibitors for T-cell diseases.7-10

Consistent with the catabolic role of
this enzyme on the substrate dGuo, bio-
chemical investigations in pediatric
patients with PNP deficiency revealed
that there was an increase in the level
of plasma dGuo.11-14 Serum dGuo was
maintained between 2 and 20 �M in
these patients, compared with unde-
tectable levels in healthy individuals. T-
cell specificity was due to the inherent-
ly greater phosphorylation of dGuo
and slower catabolism of the phospho-
rylated dGTP in T-cells. This, in turn,
leads to dGTP-directed inhibition of
DNA synthesis and cell death.11-16 This

knowledge provided the rationale for
using PNP as a target for development
of therapeutics that would be selective
to T-cells. Attempts to achieve high lev-
els of plasma dGuo by intravenous infu-
sion of dGuo was hampered by its rap-
id degradation resulting from the high
specific activity of PNP, ubiquitous in
large body organs such as liver, spleen,
kidney, and circulating lymphocytes
and erythrocytes in blood.8,17 Hence,
pharmacologic inhibition of PNP
would be required to increase plasma
dGuo concentration.

Inhibitors of PNP
Several agents have been shown to

inhibit PNP,18 and pharmacokinetic
studies have demonstrated that greater
than 95% continuous inhibition of
PNP is required to achieve significant
reduction in T-cell levels.19 Acyclovir, a
potent inhibitor of Herpes simplex virus
replication, also inhibits PNP, albeit to
a lesser extent, making it unsuitable for
clinical use.20 Similarly, allopurinol, 6-
mercaptopurine, and 6-methoxypu-
rines inhibit PNP, but only at very high
drug concentrations.21 C-8 substituted
analogs such as 8-iodoguanosine and
8-aminoguanosine have been used as
inhibitors of PNP and resulted in T-cell
selective cytotoxicity.21,22 Additional
PNP inhibitors include analogs of
deoxyguanosine such as 8-amino-9-(2-
thienylmethyl)guanine (PD119229)23

and analogs of deazaguanine.24,25 How-
ever, the inhibitory activity was not as
potent as that observed with N7 substi-
tuted congeners.4 For example, an N7
modified analog, BCX-34 (Peldesine)
had an IC50 of 30 nM; however, when
used in clinical trials to treat patients
with psoriasis and cutaneous T-cell lym-
phomas, there was no significant clini-
cal activity. Enzymatic studies indicat-
ed that BCX-34 had a rapid off rate and
could not inhibit PNP completely and
elevate the plasma dGuo levels neces-
sary for T-cell suppression.18,26



Forodesine- PNP Inhibitor
Schramm’s group used another strategy to

design more potent PNP inhibitors by identifica-
tion of the transition-state structure stabilized by
the target enzyme.27-29 Geometric and electrostat-
ic properties of the transition-state of substrate
were used as an atomic blueprint to design chem-
ically stable isologues to act as analogs. Using ino-
sine as a substrate for transition-state analysis, a
series of 9-deazanucleoside analogs, termed
immucillins, was designed to mimic the transi-
tion-state.30-32 The immucillins have a carbon-car-
bon linkage between a cyclic amine moiety that
replaces ribose, and either 9-deaza-hypoxanthine
or 9-deaza-guanine (immucillin H (now forode-
sine) and immucillin G, respectively). These
analogs inhibited PNP with high potency; the Ki
values were in 20–80 pM range for human and
bovine enzyme.33

Forodesine in cell lines
Forodesine in the presence of dGuo was tested

on malignant T cell lines and on normal activat-
ed human peripheral T cells. These drugs inhib-
ited the growth of malignant T cell leukemia
lines with the induction of apoptosis. These
actions were selective as no or minimal inhibi-
tion was observed in malignant B cells, several
solid tumor cell lines, or normal human nonstim-
ulated T cells. Phosphorylation of deoxyguano-
sine and the accumulation of dGTP, were essen-
tial for activity of the drugs.34,35

Forodesine in animal model systems
In vivo investigations in murine model systems

suggested that BCX-1777 elevates dGuo levels,
however, the drug was not effective because of
low or no accumulation of dGTP in mouse T-
cells. In contrast, in the human peripheral blood
lymphocyte severe combined immunodeficiency
mouse model, the drug was effective in prolong-
ing life.36 Furthermore, an oral formulation
showed 63% bioavailability in mice36 but much
lower in primates.37

Forodesine in humans
The first phase I investigation38could be viewed

as preclinical investigation as it was designed to
test the hypothesis that forodesine would inhib-
it PNP in vivo resulting in biochemical sequelae
that would increase levels of dGuo in plasma and
dGTP in leukemic T-cells. Since prior investiga-
tions of another PNP inhibitor (BCX-34 or Pelde-
sine) had failed to achieve this objective, this
study was done only in 5 patients with several
plasma and cellular pharmacokinetic and phar-

macodynamic endpoints. Pharmacokinetic inves-
tigations of the parent drug in plasma showed
that concentrations between 4–8 �M of forode-
sine were achieved with 40 mg/m2 dosing.38 This
starting dose was thus likely sufficient to achieve
an effective inhibitory level of forodesine in plas-
ma, given that the concentration needed to
inhibit the human PNP enzyme is in the picomo-
lar range. Additionally, the observed peak level
of forodesine (median 5.4 uM); and the long t½
(median 10 hours) in this study suggested that
once daily dosing of 40 mg/m2 might be suffi-
cient to provide adequate and maintained drug
exposure for inhibition of PNP. Consistent with
these observations, infusions of forodesine for 30
minutes resulted in a rapid increase of both plas-
ma dGuo (median 14 �M) and inosine, and a
single dose produced a sustainable 24 hour dGuo
response.

With these high and maintained plasma levels
of dGuo, it was expected that circulating T-cells
would also accumulate high levels of intracellu-
lar dGTP. In three of 5 patients, the leukemia
cells accumulated concentrations of dGTP which
were 40 to 60-fold greater than pretreatment lev-
els. Sample from one patient had a 10-fold
increase while leukemia cells from another
patient had no augmentation in intracellular
dGTP level. These data, albeit in a limited num-
ber of patients, strongly suggested heterogene-
ity regarding accumulation of dGTP which is not
directly related to plasma levels of dGuo. In addi-
tion, a direct relationship was observed between
leukemia cell reduction in peripheral blood and
intracellular accumulation of dGTP. In the
patient with progression of disease during ther-
apy, no intracellular accumulation of dGTP was
observed. In contrast, the other 4 patients had
cytoreduction of disease which correlated with
marked increases in intracellular dGTP. In sum-
mary, this was the first demonstration in human
that forodesine is an effective inhibitor of PNP,
resulting in increase in plasma dGuo and cellu-
lar dGTP. Ongoing phase II clinical trials are
exploring the efficacy of protracted single daily
dosing of intravenous forodesine while phase I
studies with an oral formulation have just been
initiated.
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