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Abstract 

The existence of cancer cells with stem cell
properties (Cancer Stem Cells, CSCs) and
their association with tumor resistance and
relapse has led to the search for active com-
pounds to eliminate these cells or modulate
their stemness in the hope of curing cancer.
So far, three classes of drugs that target can-
cer stemness (Stemness Modulator Drugs)
have been identified: i) drugs that selectively
eliminate CSCs (stem cell targeting drugs);
ii) drugs that decrease stemness (stemness
inhibitor drugs); and iii) drugs that promote
stemness (stemness promoting drugs). In
addition, microenvironment modulating
drugs aimed at selectively targeting the stem
cell niche are being investigated and may rep-
resent an important class of drug for cancer
therapy. This article will briefly review the
current use of these substances and discuss
the potential outcomes, challenges and limi-
tations of treatment modalities using these
classes of drugs for cancer treatment. Finally,
a modular tumor model will be proposed as a
guide to integrate our knowledge on the biol-
ogy of cancer stem cell with that of the tumor
microenvironment to promote a more ration-
al development of anticancer therapy. 

Introduction

In most types of cancers, different subpop-
ulations of cancer stem cell (CSCs) or cancer
stem-like cells (CS-LCs) have been described.
There is a still considerable debate on the
existence of CSCs and on the exact nature of
these cells.1-4 Due to technical limitations and
the lack of reliable markers for CSCs, the data
from some scientific articles that reported the
isolation of CSCs and their characterization
in term of their biological properties and
chemosensitivity should be taken with cau-
tion. To illustrate this, the initial identifica-
tion of cancer stem cells in human brain
tumors was made by assessing the expression
of the neural stem cell surface marker
CD133.5 In that study, CD133+ cells, but not

CD133– cells, showed marked stem cell activ-
ity. Later, several authors used CD133 as a
glioma stem cell marker.6,7 In one study,
CD133+ cells were significantly resistant to
temozolomide, carboplatin, paclitaxel and
etoposide compared to autologous CD133–

cells.7 In another study, temozolomide was
shown to preferentially deplete CD133+ cells.8

It was later found that CD133 is not a reliable
marker for glioma stem cells since CD133–

glioblastoma cells (for the anti-CD133 anti-
body) actually express a truncated variant of
the CD133 protein and that CD133– cells were
also tumorigenic and able to repopulate the
CD133+ fraction.9,10 The limitations of CD133
as stem cell marker are not restricted to brain
tumors11 and have also been documented for
lung cancer.12 For some types of immunother-
apy, CD133 status seems to be irrelevant
since both CD133+ and CD133– are suscepti-
ble to NK-mediated cytotoxicity.13 In consider-
ation of these data, the real impact of the
research performed on glioma stem cells
using CD133 as a surface marker has to be
carefully evaluated. Other methods to isolate
cancer stem cells (e.g. side population (SP)
fraction, neurospheres) also have severe lim-
itations and, once again, the results should be
analyzed with care. Due to space limitations,
this issue will remain beyond the scope of
this manuscript. In this manuscript, CSCs
and CS-LCs will be used indistinctly and
referred to as CSCs/CS-LCs. 

The classical division between CSCs/CS-
LCs and non-CSCs is not the best model for
cancer biology. Instead, there is a growing
consensus that tumors are more heteroge-
neous and contain several subpopulations of
cells with different degrees of stemness
(CSCs/CS-LCs) that are usually associated
with increased resistance to chemothera-
py.14,15 It is not a surprise then that CSCs/CS-
LCs can be selected in vitro following treat-
ment with anticancer drugs16,17 and standard
chemotherapy enrich for CSCs/CS-LCs in both
xenografted mice and treated patients. The
obvious implication is that to cure cancer all
subpopulations should be the target and this
leads us to ask: how many subpopulations
actually exist in a given tumor and how differ-
ent are they from each other? How many
drugs do we need to target all of them?

This article will emphasize the general
effect and outcomes we can expect from
CSCs/CS-LCs targeting drugs and/or the
tumor microenvironment according to our
present knowledge of cancer biology.
Providing an entire update of the list of
CSCs/CS-LCs targeting drugs is beyond the
scope of this review. However, reviews cover-
ing these specific topics have been recently
published and are referred to through this
article. 

Cancer stem cells/cancer stem-
like cells targeting drugs

Selectively targeting CSCs/CS-LCs was ini-
tially considered a very promising strategy to
cure cancer. In theory, any specific cancer
stem cell marker is a potential target and
attempts have been made to formulate strate-
gies to exploit them. The limitations of the
cancer stem cell markers will likely be trans-
lated into clinical failure when trying to target
these markers. For instance, targeting
CD133+ cells with monoclonal antibodies for
glioma treatment will serve no purpose since
it will spare the CD133– cells that can repopu-
late the original tumor. Monoclonal antibod-
ies targeting other surface markers (e.g.
CD123, CD44, CD33, and CD326) have been
developed and are under evaluation. As
expected, some of them, such as gemtuzumab
ozogamicin (Mylotarg) and lintuzumab18 and
bivatuzumab mertansine19 have, in the best
cases, shown only modest benefit and have
been discontinued. Despite the extensive list
of potential specific CSCs/CS-LCs targeting
drugs, for the moment, few drugs that selec-
tively kill these cells have been identified
(Table 1).20-31 Salinomycin was identified as
selective inhibitors of cancer stem cells by
high-throughput screening from a collection
of 16,000 compounds.20 It was shown to
induce apoptosis in human CD4+ T-cell
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leukemia cells, but not in normal CD4+ T
cells.24 However, salinomycin is very toxic to
other normal cells at concentrations effective
against CSCs.32 Thus, it is unlikely that sali-
nomycin will be useful as a single agent.33

The identification of signaling pathways
important for maintaining the stemness phe-
notype was received with great enthusiasm
and several small molecules are currently
being investigated. The signaling pathways
that can be targeted include Hedgehog, Notch
and Wnt, among others.34,35 For instance,
cyclopamine36 and SANT-1 target the Hedge -
hog pathway that may contribute to the induc-
tion and maintenance of pancreatic37 and
breast38 tumors. During the period 1999-2009,
at least 44 novel substances have been
patented as inhibitors of the Hedgehog path-
way39 and many others (including some acti-
vators) are being tested.40 Some novel com-
pounds (GDC-0449 and IPI-926) have entered
clinical trials.41 ZTM000990 and PKF118-310
target the canonical WNT signaling cascade35

and gamma-secretase inhibitor GSI-18 is
active against the Notch signaling path-
way.6,42 Most of these substances are in the
very early phase of pre-clinical testing.
Similar to salinomycin, they may be of limited
use as single agents. Other available sub-
stances, while not selective CSCs/CS-LCs
inhibitors or selective targeting stemness sig-
naling pathways, are able to modify the stem-
ness properties of cancer cells (Table 2).43-57

Therefore, at least three classes of stemness
modulating drugs (SMDs) have been identi-
fied. 

i) Stem cell targeting drugs (SCTDs) selec-
tively kill CSC/CS-LCs sparing non-CSCs.
Salinomycin may be a prototype of this class
but it use may be limited by its high toxicity.33

Other SCTDs have been reported (Table 1). 
ii) Stemness inhibiting drugs (SIDs) do

not kill CSCs/CS-LCs but reduce the stemness
properties of the cancer cells. Few drugs with
these properties have been identified (Table
2). Although there is little distinction
between an SCTD and an SID (SID at high

doses may eliminate CSCs/CS-LCs), they are
conceptually different classes of drugs. While
an SCTD eliminates CSCs/CS-LCs at concen-
trations that are much less toxic to non-CSCs
(e.g. salinomycin, see below), an SID may
eliminate non-CSCs and CSCs/CS-LCs with
similar potency but at the same time reduce
the stemnnes of CSCs/CS-LCs. 

iii) Stemness promoting drugs (SPDs) do
not kill CSCs/CS-LCs but increase the stem-
ness properties of the cancer cells. So far, to
our knowledge, only metformin has been
reported to have this property (Table 2).

Review

Table 2. Examples of stemness modulator drugs (SMDs).  

Cell line/cancer Agent Effect on stemness /  Refs.
(effect on cytotoxicity)

U87MG and U373MG (glioma) Eckol ↓ / (↑) 43
U87 (glioma) Nordy ↓ / (N.A.) 44
HCT116 (colorectal) Lovastatin ↓ / (↑) 45
SW1990 (gemcitabine-resistant pancreatic cell line) Cyclopamine ↓ (↑) 46
Breast SANT-1 ↓ (↑) 38
Pancreas SANT-1 ↓ (↑) 37
Patient-derived (glioma) Resveratrol ↓ / (↑) 47
Patient-derived (glioma) AG490 ↓ / (↑) 47
Patient NSCLC-derived cells (lung) Cucurbitacin ↓ / (↑) 48
Patient HNSCC-derived cells (Head and neck squamous cell carcinoma) Cucurbitacin ↓ / (↑) 49
MCF-7 (breast) Metformin ↑/ (N.A.) 50
MCF-7 (breast) Berberine ↓ /  (N.A.) 51
FOLFOX-resistant cells (colon cancer) Curcumin ↓/ (↑) 52
Glioma ER-400583-00 ↓(↑) 53
Glioma WP1193 ↓(↑) 54
Glioma Angiogenesis inhibitors ↓(↑) 55
Glioma All-trans retinoic acid ↓(↑) 56
Non-cancer

3T3-L1 preadipocytes Curcumin ↑/ (N.A.) 57

Table 1. Examples of selective cancer stem cells targeting drugs (SCTDs). 

Agent Cancer type Refs.

Salinomycin Breast 20
Gastric 21
Prostate 22
Osteosarcoma 23
Acute T-cell leukemia 24
Chronic lymphocytic leukemia 25
Human promyeloblastic leukemia 26
Colorectal 27
Lung adenocarcinoma 28

3-O-methylfunicone Breast 29
LSD1 inhibitors Several pluripotent germ cell tumors (F9, NCCIT, NTERA-2) 30
Cyclopamine Patient-derived (glioma) 31
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Combination therapy using
stemness modulator drugs

Combination therapy using monoclonal
antibodies against stem cell markers and stan-
dard anticancer drugs did not show any great
benefit. Recent Phase II studies of combina-
tion therapy with gemtuzumab ozogamicin
(GO), e.g. GO + vorinostat,58 GO + ara-C,59 GO
+ arsenic trioxide60 and GO + fludarabine,
cytarabine, idarubicin (FLAI-GO),61 showed
limited efficacy or, in the best cases, encourag-
ing results that need further evaluation in
multicenter trials.

Several combinations of an SMD + standard
anticancer drug (SAD) have reported (Table
3)62-72 potential advantages including a more
potent anticancer effect with lower toxicity to
normal cells. However, most of those studies
did not evaluate the ability of the combination
agents to actually deplete all cancer cells when
that should be the ultimate goal. This is in part
because most of the in vitro assays to test

these drug combinations use short term assays
(24-72 h) that are not adequate to evaluate the
fate of surviving cells.73 It is possible that the
encouraging effect of these combinations
(SMD+SAD) will be no better than any other
standard combination (SAD1+SAD2) and that
after treatment they will leave a fraction of
resistant surviving cells that will lead to a
tumor relapse. For a successful treatment (i.e.
a cure) these cells need to be eliminated.

Targeting the microenviron-
ment and lessons from the
anti-angiogenesis hypothesis

The microenvironment plays an important
role in determining the stemness properties of
cancer cells and may constitute an important
target.74-76 Microenvironment targeting drugs
(MMDs) are also being developed (Table 4)77-85

but one can anticipate the same type of prob-
lems and ask the same questions as before for

targeting CSCs/CS-LCs: how many microenvi-
ronments actually exist in a given tumor and
how different are they from each other? How
many drugs do we need to target all of them? In
fact, cancer researchers have been targeting
the microenvironment without success for
almost 40 years with angiogenesis inhibitors.
Angiogenesis is the formation of new blood
vessels and since tumors need blood vessels to
grow and spread it was postulated that block-
ing this process would stop cancer growth. The
idea was received with great enthusiasm. Up
till now, hundreds of angiogenesis inhibitors
have been developed and tested but only a few
have shown any benefit in clinical trials and
none of them succeed in curing cancer. It
seems that angiogenesis inhibition is not
enough86 either alone or in combination with
other anticancer modalities. For advanced
melanomas, around 70 angiogenesis inhi -
bitors with different mechanisms of actions
are in clinical experimental use but this dis-
ease still has a poor prognosis with an average
survival of less than one year.84 To date, angio-
genesis inhibition has only improved progres-

Review

Table 3. Examples of combination therapy with stemness modulatordrug and standard anticancer drugs. 

Combination Cancer type Refs.
Stemness modulatordrug (SMD) Standard anticancer drug (SAD)

Salinomycin Gemcitabine Pancreatic 62
Salinomycin Octreotide modified Paclitaxel Breast 63
Salinomycin Etoposide Hepatic

Doxorubicin Uterine sarcoma Breast 64
SANT-1 SAHA Pancreatic 65
GSI-XII Bortezomib Multiple Myeloma 66
GSI-XII ABT-737 Multiple myeloma 67
Curcumin Dasatinib Colon 52,68,69
Curcumin Gemcitabine Pancreatic 70
Curcumin Gemcitabine Bladder 71

Placlitaxel
Tumor necrosis factor (TNF) 
TNF-related apoptosis inducing ligand

Curcumin 5-FU plus oxaliplatin (FOLFOX) Colon 72
ER-400583-00 Radiation Gliomas 53
VEGFR2 targeting antibody Cyclophosphamide Gliomas 55

Table 4. Examples of microenvironment modulator drugs (MMDs).  

Cell line/cancer Agent Refs.

Pancreas PF-562,271 77
Different models of cancer Monoclonal antibody (AB0023) 78
Lung Pazopanib 79
Human colon and gastric cancer xenograft TSU68 80,81
Head and neck squamous cell carcinoma Non-small cell lung cancer Erlotinib 82
Glioblastoma QLT0254 83
Glioblastoma QLT0267 83
Melanoma Angiogenesis inhibitors 84
Gliomas Angiogenesis inhibitors 85 
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sion-free survival in highly vascular tumors
such as gliomas,85,87,88 ovarian cancer89 or
hepatocellular carcinoma,90 but no cure has
been achieved. The response of the cancer
community to the cancer stem cell hypothesis
has been in some ways similar to the idea
introduced around 40 years ago to treat cancer
by inhibiting angiogenesis. The pharmacologi-
cal search for the elimination or modulation of
cancer stem cells seems to sum up the angio-
genesis story: the pioneer identification of
putative stem cells in human acute myeloid
leukemia in 1997,91 and later in 2003 in breast
cancer92 and brain tumors,5 gave rise to exten-
sive research on the biology of CSCs/CS-LCs as
well as on the development of pharmacological
agents targeting these cells. Equally disap-
pointing, after almost 15 years of cancer stem
cell research, anticancer drugs targeting
CSCs/CS-LCs have shown only modest clinical
benefit. 

Substances that inhibit or indirectly modu-
late the expression of the hypoxia-inducible
factor-1 (HIF-1), such a konokiol,93 manassan-
tin B and 4-O-demethylmanassantin B,94 lau-
renditerpenol,95 curcumin,96 trans-3,4,5'-trihy-
droxystibene,97 resveratrol,98 SU5416,99 are
also modulators of the microenvironment.
However, they showed little efficacy either
alone or in combination with standard anti-
cancer agents or radiation. Around 30 HIF
inhibitors are currently being investigated in
clinical trials90 but it has already been shown
that some of them fail to cure cancer.

The finding that a subset of glioblastoma
stem-like cells show characteristics of
endothelial progenitors and are capable of
maturation into endothelial cells,100 if con-
firmed for other types of tumors, further sup-
ports the idea that all cancer cells should be
eliminated at once and that specific subpopu-
lations of cancer cells or specific microenvi-
ronments per se are minor targets in the com-
plex tumoral tissue.

Anticipated problems for tar-
geting cancer stem cells/cancer
stem-like cells or the tumour
microenvironment

The heterogeneous nature of CSCs/CS-LCs
may represent an important problem for the
selective targeting of specific cancer cell sub-
populations, stemness-related signaling path-
ways or specific tumor microenvironments.
For instance, metastatic colon cancer HCT116
cells express the majority of known CSC mark-
ers but also show markedly phenotypic varia-
tion indicating that CSCs represent a hetero-
geneous population.101 These signaling path-

ways per se are not valuable targets for anti-
cancer therapy. It is likely that, due to the high
intratumoral heterogeneity, the functional sta-
tus of a particular signaling pathway can be
highly active in one cell phenotype, relatively
inactive in another and close to normal in a
third phenotype within the same tumor. A
small molecule targeting this particular path-
way will only be effective on the cells that
belong to the first group. As discussed above, a
similar outcome can be expected with MMDs.

A modular tumor model 

In gliomas, radioresistance seems to be the
result of interaction between cancer cells and

the microenvironment that creates a microen-
vironment-stem cell unit and there is exten-
sive data to suggest that CSCs/CS-LCs reside
in specific niches (microenvironment).102 If
this is true, it is obvious that there are other
specific niches where non-CSCs and other
cancer cell subpopulations reside. This sug-
gests that complex, highly heterogeneous
tumors may be organized in modules of specif-
ic cancer cell phenotype in their specific
microenvironment (modular tumor model
(MTM)). Each module is a microenvironment-
cancer cell unit enriched for cells with a specif-
ic stemness phenotype. The interaction
between the microenvironment and their asso-
ciated cells determines the chemosensitivity of
the entire module for a particular anticancer
agent. Figure 1 shows the schematic represen-

Review

Figure 1. The modular tumor model (MTM). S1-S8 represent cancer cells with different
stemness phenotypes (subpopulations) in their respective microenvironment (M1-M8)
that creates specific microenvironment-cancer cell units (e.g. M1/S1or M8/S8). D1-D5
represents drugs or a combination of drugs that preferentially eliminate a specific cell
phenotype or target a specific microenvironment (that in turn eliminates a subpopula-
tion of cancer cells). Their position in the chart indicates the target (e.g. D1 targets S1-
S2 and/or M1-M2). Treatments A-G represent the use of D1-D5 as single agents or in
combination and the predicted outcome depending on the tumor heterogeneity. A high-
ly homogeneous tumor (Tumor I) will be easily cured with one (D5, treatment G) or two
drugs (D1 and/or D4, treatment F). As tumor heterogeneity increases (from Tumor I to
Tumor IV), the number of drugs necessary to eradicate the tumor also increases.
Treatments A and B (single agents) will be ineffective. Treatment D will be effective for a
Tumor I, II and III but ineffective for Tumor IV since it will spare the M3/S3 and M4/S4
modules. For simplicity, only 8 different continuous modules (showed as a gradient from
M1/S1 to M8/S8) have been presented in this model.
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tation of tumors of increasing heterogeneity
and an increasing number of microenviron-
ment-cancer cell units. Due to the plastic
nature of cancer cells, changes in the microen-
vironment (e.g. drugs) (Table 2) can eliminate
or affect the stemness of the associated cells.
Highly homogeneous tumors are organized in
only a few modules and highly heterogeneous
tumors in many. The increasing complexity
dictates the number of drugs necessary to
eliminate all modules. It is likely that the most
curable cancers (e.g. testicular cancer103 or
acute promyelocytic leukemia (APL)104 are the
most simple and are organized in just a few
microenvironment-cancer cell modules (simi-
lar to Tumor I in Figure 1). Indeed, APL, a rare
but highly homogeneous cancer, can be cured
in most cases with a combination of all-trans
retinoic acid (ATRA) and arsenic trioxide
(ATO).104,105 These drugs also target the
leukemia-initiating cells.106,107 For highly het-
erogeneous tumors, usually associated with a
poor prognosis, it will be necessary to identify
and characterize all relevant modules in order
to develop effective cancer therapies. 

Conclusions

The complex cellular heterogeneity of can-
cers and the growing evidence that tumors
contain cells with different stem cell pheno-
types, that in turn reside in specific microen-
vironment rather than a pure CSC and a non-
CSC subpopulation, challenges and limits the
clinical use of SMDs and/or MMDs. Despite
the enormous interest and apparent strong
rationale to develop SMDs and/or MMDs, the
chances of obtaining a cure are slim since we
do not know how many subpopulations (or
phenotypes) of cancer cells and specific
microenvironments need to be targeted. At
present, there is still a translational gap
between the basic research and pre-clinical
anticancer drug screening. On a basic level,
we are aware of the complexity of tumors and
recognize the need for therapies aimed at
eliminating all cancer cells. But most in vitro
pre-clinical studies and tests in animal models
are usually designed to target only a few can-
cer cell phenotypes. This translates into poor
clinical outcome since most clinical trials are
also designed for testing single agents or com-
binations of just a few (usually 2-3) drugs that
will likely eliminate only a few cancer cell sub-
populations. Unless we develop a more inte-
grated approach to eliminate all cancer cells at
once rather than target a specific pathway, cell
subtype or microenvironment, the next 25
years will only serve to repeat the experience
of 40 years of angiogenesis research. We will

get a better understanding of cancer stem cell
biology and tumor microenvironment, and
produce and test hundreds or thousands of
novel drugs, but very limited clinical success
will be achieved. The real challenge is to find
a way to integrate advances in cancer biology
into successful therapies that save lives. The
MTM may serve as a useful guide to develop
cancer treatment regimes in a more rational
way, based on our knowledge of the complexi-
ty of tumor biology in terms of cancer stem
cells and their interaction with the tumor
microenvironment. 
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