Where does \(^{90}\text{Y}-\text{ibritumomab tiuxetan radioimmunotherapy fit? Selecting the right patient}

Introduction

Non-Hodgkin’s lymphoma (NHL) is a heterogeneous group of related haematological neoplasms, predominantly of B-cell origin.\(^1\) In contrast to most types of cancer, the incidence of NHL and its associated mortality have been steadily increasing over the past few decades, for reasons that remain to be fully elucidated.\(^2\)

As a result of advances over the past 20 years, a range of treatments is currently available for the various types and stages of NHL, including external beam radiotherapy, high-dose chemotherapy, stem cell transplant and immunotherapy.\(^3\) The
most recent development is the emergence of radioimmunotherapy (RIT) in the form of B-cell–targeted monoclonal antibodies conjugated with radioisotopes that emit ionising radiation. RIT is a particularly attractive approach for the treatment of B-cell lymphomas because these tumour types (a) are inherently more sensitive to radiation than many other tissues in the body and (b) express cell-surface antigens ideal for targeting.

Two major attractions of RIT are the target-ed delivery of radioactive particles to the cancerous cells, and the cross-fire effect. Targeted delivery of radiation should enhance the antitumour activity of a radioimmunon conjugate beyond that achieved by its equivalent unlabelled monoclonal antibody through mechanisms such as complement-mediated cytotoxicity, antibody-dependent cellular cytotoxicity, and apoptosis. Furthermore, the continuous delivery of radiation, compared with the intermittent doses administered by external-beam radiotherapy, may be more effective for preventing repair of radiation-damaged DNA in tumour cells. The cross-fire effect, in which radiation from radioimmunoconjugate-bound tumour cells reaches those neighbouring cells without bound antibody, can kill cells in a tumour that either do not express the target antigen or which the monoclonal antibody cannot physically reach. Thus, the cross-fire effect may be particularly relevant for treating patients with tumours that are bulky and poorly vascularised, and/or have heterogeneous expression of target antigen.

Yttrium-90 (\(^{90}\)Y)-ibritumomab tiuxetan (Zevalin®) is currently the only RIT commercially available in Europe for therapy of NHL. \(^{90}\)Y-ibritumomab tiuxetan was registered by the European Medicines Agency (EMEA) in January 2004 and is indicated for the treatment of adult patients with rituximab-relapsed or refractory CD20+ follicular B-cell NHL. \(^{90}\)Y-ibritumomab tiuxetan had previously been licensed in the US in February 2002 for the treatment of patients with relapsed or refractory low-grade, follicular or transformed B-cell NHL, including those with rituximab-refractory follicular NHL.

As a consequence of its recent emergence as a treatment modality for NHL, haematologists and oncologists are challenged with managing the use of \(^{90}\)Y-ibritumomab tiuxetan to achieve optimal outcomes for patients. In general, potential barriers to the use of RIT in the treatment of NHL include: the occurrence of myelosuppression; the costs of treatment and management of adverse events; the need for hospitalisation, dosimetry and shielding with some isotopes; and the risks of radiation exposure to healthcare workers, patients and their families. This paper will discuss how these general issues relate to the selection of NHL patients most suitable for treatment with \(^{90}\)Y-labelled immunotherapy.

Physical characteristics and administration of \(^{90}\)Y-ibritumomab tiuxetan

\(^{90}\)Y-ibritumomab tiuxetan consists of ibritumomab, a murine IgG1 monoclonal antibody directed against the CD20 antigen, covalently linked to tiuxetan, a metal-binding group that stably chelates the radioisotope \(^{90}\)Y. The CD20 antigen is expressed almost exclusively on the surface of mature B lymphocytes, including normal and malignant cells. Ibritumomab is the murine parent of the human chimeric monoclonal antibody rituximab, whose role in immunotherapy of B-cell NHL is now well established. The \(^{90}\)Y radionuclide has a half-life of only 64 hours and decays to zirconium-90 (\(^{90}\)Zr) in a process that releases high-energy \(\beta\) particles only. The cross-fire potential of \(^{90}\)Y-ibritumomab tiuxetan stems from the effective path length of the emitted \(\beta\) particles, 5.3 mm in soft tissue,
enabling their penetration of a tissue layer approximately 100 to 200 cells thick.7

Whereas iodine-131 (131I), the other main radioisotope employed in RIT, emits penetrating gamma (γ) rays as well as β particles, 90Y is a pure β-emitter, which offers safety advantages in terms of preparation and administration, and reduced risk of radiation exposure to individuals interacting with the patient.7 During preparation of radiolabelled immunonjugate from cold ibritumomab tiuxetan, and subsequent administration of the labelled antibody, plastic and acrylic materials can be used for shielding healthcare workers and patients, as approximately 1 cm of such materials absorbs all emitted β particles.

Administration of 90Y-ibritumomab tiuxetan

A course of treatment with 90Y-ibritumomab tiuxetan spans 7 to 9 days (Figure 1). On day 1, a 10-minute intravenous (IV) infusion (push) of rituximab 250 mg/m2 is administered to enhance the subsequent delivery of 90Y-ibritumomab tiuxetan to tumour sites. By blocking the most accessible CD20 sites in peripheral blood, rituximab inhibits non-tumour-specific uptake of the immunoconjugate by the reticuloendothelial system. On day 7, 8 or 9, an identical repeat dose of rituximab is followed immediately by a 10-minute IV push of 90Y-ibritumomab tiuxetan.5 The dosage of 90Y-ibritumomab tiuxetan is calculated on the basis of the patient’s body weight and baseline platelet count.7 Dosages of 14.8 MBq/kg (0.4 mCi/kg) or 11.1 MBq/kg (0.3 mCi/kg) are administered to patients with pretreatment platelet counts of ≥150×109/L or 100-149×109/L, respectively, up to a maximum dose of 1,184 MBq (32 mCi). Dosimetry, via imaging with indium-111-labelled ibritumomab tiuxetan on day 1 following the rituximab dose, is generally not required for determining the therapeutic dose in patients meeting the eligibility criteria of <25% bone marrow infiltration by lymphoma cells.

The absence of penetrating γ-emissions associated with 90Y-ibritumomab tiuxetan means that it can be routinely administered on an outpatient basis,7 provided it is allowed by law. In contrast, treatment with 131I-based RIT has traditionally necessitated hospitalisation, often in specialised, shielded facilities.4 Virtually all the radioactivity from a therapeutic dose of 90Y-ibritumomab tiuxetan is retained within the body, with the main clearance mechanism of urinary excretion eliminating only approximately 7% of the administered dose over the following 7 days.4 The risk of radiation exposure to family members and acquaintances of treated patients in the week following treatment with 90Y-ibritumomab tiuxetan is in the range of background radiation.9 Because the amount of radioactivity contained in bodily fluids of treated patients is very small, no additional measures beyond standard universal precautions for handling body fluids are needed to minimise exposure.
to acquaintances of outpatients or hospital caregivers of individuals receiving inpatient treatment for medical reasons. In contrast to patients who have been treated with 131I-RIT, there is no need to determine activity limits or dose rate limits before discharge of patients treated with 90Y-labelled immunotherapy.

Patient selection criteria

Patient selection is the key to achieving optimal outcomes with 90Y-ibritumomab tiuxetan. Myelosuppression is the dose-limiting toxicity associated with 90Y-ibritumomab tiuxetan and the risk of grade 4 cytopenias is proportional to the amount of lymphoma penetration in the bone marrow. These side effects would appear to be a consequence of the targeting of CD20+ cells by 90Y-ibritumomab tiuxetan; i.e., greater numbers of CD20+ NHL cells within the marrow lead to more 90Y-ibritumomab tiuxetan distributing into this tissue compartment and hence more associated myelotoxicity. Consequently, patients with adequate bone marrow reserves and limited involvement of lymphoma with bone marrow are the optimal candidates for 90Y-ibritumomab tiuxetan therapy. Selection of patients should, therefore, encompass the criteria detailed in Table 1. Based on an acceptable safety and efficacy profile demonstrated in elderly patients in clinical trials, 90Y-ibritumomab tiuxetan can be administered to patients aged ≥65 years.

Tolerability of 90Y-ibritumomab tiuxetan

An analysis of safety data pooled from five separate clinical trials involving 349 outpatients with relapsed, refractory, or transformed CD20+ B-cell NHL has showed 90Y-ibritumomab tiuxetan to be generally well tolerated. Associated toxicity was primarily haematologic and reversible. Nadir blood counts occurred at 7 to 9 weeks following administration of radioactive dose and persisted for a further 1 to 4 weeks. Grade 4 neutropenia, thrombocytopenia, and anaemia occurred in 30%, 10%, and 4% of patients, respectively. Overall, 279 of 349 patients (80%) experienced non-haematologic adverse events associated with 90Y-ibritumomab tiuxetan treatment, which were generally attributed to the rituximab component of the regimen. The majority of non-haematological adverse events were grade 1 or 2, with the most frequent being asthenia (35%), nausea (25%), chills (21%) and fever (13%) (Figure 2). Grade 3 or 4 non-haematologic adverse events occurred in 39 patients (11%). Grade 3 or 4 infection occurred in 16 patients (5%). To date, no infusion-related acute hypersensitivity reactions to 90Y-ibritumomab tiuxetan itself have been documented, although rare cases have been reported with rituximab infusion.

Efficacy of 90Y-ibritumomab tiuxetan

Several clinical trials have demonstrated that 90Y-ibritumomab tiuxetan is an effective therapy for NHL. In a pivotal randomised phase
III trial in 143 rituximab-naïve patients with relapsed or refractory low-grade follicular or transformed CD20+ NHL, ³⁹Y-ibritumomab tiuxetan exhibited greater efficacy than rituximab.¹⁵ In this study, overall response rate (ORR), the primary efficacy endpoint, was 80% in the ³⁹Y-ibritumomab tiuxetan-treated group, compared with 56% in the rituximab-treated group (p=0.002). Complete responses (CR) were achieved by 30% of the ³⁹Y-ibritumomab tiuxetan-treated group, compared with 16% of rituximab-treated patients (p=0.04). Although the study was not powered to detect differences in time-to-event variables, long-term follow-up at a median of 44 months revealed trends towards longer time-to-progression (TTP), duration of response, and time-to-next therapy in patients treated with ³⁹Y-ibritumomab tiuxetan.¹⁷ In patients who achieved either a complete response (CR) or unconfirmed CR (CRu), the median TTP was 24.7 months in those treated with ³⁹Y-ibritumomab tiuxetan, compared with 13.2 months in rituximab recipients (p=0.41). The greatest differences in time-to-event variables were in patients with follicular lymphoma, who comprised 79% of the study population.

³⁹Y-ibritumomab tiuxetan has also demonstrated efficacy in rituximab-refractory patients. In a pivotal trial in 54 patients with follicular NHL who had failed prior therapy with rituximab, treatment with ³⁹Y-ibritumomab tiuxetan elicited an ORR of 74%, comprised of CR and partial response (PR) in 15% and 59% of patients, respectively.¹⁶ Furthermore, in a phase II trial, the low dose of ³⁹Y-ibritumomab tiuxetan was shown to be effective in patients with mild thrombocytopenia.¹⁴ In this study, 30 patients with advanced, relapsed or refractory, low-grade, follicular, or transformed B-cell NHL, and a platelet count of 100–149 × 10⁹/L, received a dose of 11.1 MBq/kg (0.3 mCi/kg). The ORR was 83% and comprised 37% CR, 6.7% CRu and 40% PR. An analysis of data pooled from several clinical trials has found that ³⁹Y-ibritumomab tiuxetan elicited long-term responses in patients with relapsed or refractory B-cell NHL.¹⁸ Durable remission, defined as TTP of ≥12 months, was achieved by 37% of all patients, including 39% of patients with follicular lymphoma. Separate analyses of the pooled clinical trial data found that ³⁹Y-ibritumomab tiuxetan appeared most effective when administered early in the treatment continuum,¹⁹ with the highest response rates achieved in second-line therapy.²⁰ Furthermore, in a study in 10 patients with previously untreated low-grade follicular lymphoma, therapy with ³⁹Y-ibritumomab tiuxetan

Figure 2: Non-haematologic adverse events following treatment with ³⁹Y-ibritumomab tiuxetan (n=349).¹⁰

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Incidence >5%; probably or possibly related to study drug or relationship unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthenia</td>
<td>25</td>
</tr>
<tr>
<td>Nausea</td>
<td>21</td>
</tr>
<tr>
<td>Fever</td>
<td>13</td>
</tr>
<tr>
<td>Headache</td>
<td>9</td>
</tr>
<tr>
<td>Throat irritation</td>
<td>9</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>8</td>
</tr>
<tr>
<td>Dizziness</td>
<td>8</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>7</td>
</tr>
<tr>
<td>Pruritus</td>
<td>7</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7</td>
</tr>
<tr>
<td>Rash</td>
<td>7</td>
</tr>
<tr>
<td>Ecchymosis</td>
<td>6</td>
</tr>
<tr>
<td>Increased cough</td>
<td>6</td>
</tr>
<tr>
<td>flushing</td>
<td>5</td>
</tr>
</tbody>
</table>

Hematology Meeting Reports 2007: 5 | 65 |
elicited an ORR of 100% (CR 62%, PR 38%), indicating its potential as a first-line therapy. Response rates from the Witzig, Emmanouilides, and Sweetenham studies shown in Figure 3 clearly demonstrate this relationship. Given the cross-fire effect of 90Y-ibritumomab tiuxetan, its efficacy in treatment of bulky disease remains of great interest. In a multivariate analysis of pretreatment prognostic variables, the ORR in patients with bulky tumours (\geq5 cm) was significantly lower than in patients with tumours <5 cm, but deemed acceptable at 68%.

Cost-effectiveness of treatment with 90Y-ibritumomab tiuxetan

Although information on the cost-effectiveness of RIT is limited, an economic analysis of 90Y-ibritumomab tiuxetan therapy concluded that it appears to be a cost-effective third-line treatment strategy for follicular lymphoma, when compared with rituximab. This study analysed data on drug price, related costs and clinical outcomes. Efficacy data derived from two published clinical trials with similar patient populations: the phase III trial of 90Y-ibritumomab tiuxetan versus standard rituximab treatment (4 weekly doses), and a phase II trial of prolonged rituximab therapy (eight weekly doses). In both studies, treated patients had received a median of 2 prior chemotherapies. The mean total cost of treatment with 90Y-ibritumomab tiuxetan was estimated to be approximately €17,332, which was higher than the estimated mean total cost of a standard 4-dose course of rituximab (€9,797) but lower than that of an eight-dose rituximab regimen (€19,993). In terms of health benefits, the average number of disease-free months per patient treated was highest for 90Y-ibritumomab tiuxetan at 14.4 months followed by 11.4 months for the eight-dose rituximab regimen and 6.2 months for the four-dose rituximab regimen. Thus, on average, third-line treatment with 90Y-ibritumomab tiuxetan instead of standard rituximab therapy would cost an additional €7,536 but would result in each patient experiencing an extra 8.2 disease-free months. Furthermore, 90Y-ibritumomab tiuxetan therapy would not only be cheaper than extended treatment with rituximab but would also result in an extra 3 disease-free months. When the estimates of health benefit were combined with costs, the mean cost per month in remission was lowest for 90Y-ibritumomab tiuxetan, estimated at €1,207, followed by €1,590 for four doses of rituximab therapy, and €1,760 for eight doses of rituximab (Table 2). Given that the cost-effectiveness of 90Y-ibritumomab tiuxetan compared favourably with rituximab in this study, it is interesting that a cost-comparison of several treatments for follicular lymphoma, excluding 90Y-ibritumomab tiuxetan, found that rituximab was less expensive than options such as stem cell transplant and IV fludarabine.

Place of 90Y-ibritumomab tiuxetan in therapy

Based on the combined evidence from clinical trials of 90Y-ibritumomab tiuxetan and other RIT, a treatment algorithm for advanced
low-grade follicular lymphoma has been proposed that integrates RIT between rituximab-based chemoimmunotherapy and stem cell transplant (Figure 4). The optimal use of \(^{90}\)Y-ibritumomab tiuxetan may prove to be as a first-line therapy. Furthermore, several clinical trials are in progress analyzing the potential of \(^{90}\)Y-ibritumomab tiuxetan as part of the conditioning regime in autologous transplantation for B-cell lymphomas.

Despite previous concern that the myelosuppression associated with RIT might have implications for the tolerability of subsequent treatments, patients who have previously been treated with \(^{90}\)Y-ibritumomab tiuxetan do not appear to have an increased risk of adverse reactions to other NHL therapies. As a consequence, patients who fail \(^{90}\)Y-labelled immunotherapy can be candidates for other treatment modalities.

Table 2: Summary of inputs and outputs of cost-effectiveness analysis (€).

<table>
<thead>
<tr>
<th>Input / output</th>
<th>(^{90})Y-ibritumomab tiuxetan</th>
<th>4-dose rituximab</th>
<th>8-dose rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mean per-patient costs of therapy</td>
<td>17332.63</td>
<td>9796.67</td>
<td>19993.26</td>
</tr>
<tr>
<td>Effectiveness in terms of average disease-free months</td>
<td>14.4</td>
<td>6.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Effectiveness in terms of average year in remissions</td>
<td>1.20</td>
<td>0.51</td>
<td>0.95</td>
</tr>
<tr>
<td>Cost per disease-free month</td>
<td>1206.84</td>
<td>1590.37</td>
<td>1759.66</td>
</tr>
<tr>
<td>Cost per year in remission</td>
<td>14482.08</td>
<td>19084.42</td>
<td>21115.92</td>
</tr>
</tbody>
</table>

Figure 4: Proposed treatment algorithm for low-grade follicular lymphoma.

Conclusions

In order to place the clinical benefits of \(^{90}\)Y-ibritumomab tiuxetan into context, it is important to note that patients in the target population have incurable disease, are symptomatic and require treatment. The \(^{90}\)Y-ibritumomab tiuxetan treatment regimen is efficacious and well tolerated, and is convenient for both the NHL patient and health care workers, with therapy able to be completed within a week in an outpatient setting with minimal shielding requirements, and very few special precautions following discharge. The key to achieving optimal outcomes with \(^{90}\)Y-ibritumomab tiuxetan is selecting the appropriate patient, namely those with limited involvement of disease with bone marrow and adequate marrow reserves. At this stage, the best time to use \(^{90}\)Y-ibritumomab tiuxetan appears to be following first relapse. Overall, \(^{90}\)Y-ibritumomab tiuxetan is a valuable addition to the therapeutic armamentarium for follicular NHL.

References

4. Press OW. Physics for practitioners: the use of radiolabeled monoclonal antibodies in B-cell Non-Hodgkin’s