Hemorrhagic cystitis: A successful outcome for a challenging complication in stem cell transplant

Sergio Pinzón Mariño,1 Samira Bakali Badesa,2 María Jesús Viso Soriano,2 Isabel Izquierdo García1
1Department of Hematology and Hemotherapy; 2Department of Anatomical Pathology, Hospital Universitario Miguel Servet, Spain

Abstract

Hemorrhagic cystitis (HC) is a frequent complication in patients undergoing hematopoietic stem cell transplantation. With an important morbidity and mortality, this disease doesn’t have a standard treatment. Cidofovir is a nucleotide analog of the DNA virus BKV, used as antiviral treatment. In this case report, we describe a male patient who received an allogeneic hematopoietic stem cell transplant (HSCT) and developed hemorrhagic cystitis (HC) secondary to BKPyV. Cidofovir was initiated after an unsuccessful treatment with dexamethasone alone. A successful improvement after using cidofovir in alloHSCT patient with HC secondary to BKPyV is described.

Case Report

A 46-year-old male patient was diagnosed with acute monoblastic myeloblastic leukemia (ANPM1) mutated. Induction chemotherapeutic treatment with cytarabine and idarubicin was performed plus two cycles of consolidation. Subsequently, an autologous transplant was performed. A bone marrow aspirate for reevaluation showed positive metabolic residual disease (0.53%) by immunophenotype, and positive mutated NPM1 with 14.7 copies, diagnosing a relapse of his leukemia. It was decided to perform an allogeneic bone marrow transplantation of identical HLA sister, and he received prophylaxis to graft versus host disease (GVHD) with cyclosporine and short-term methotrexate. He evolved favorably until day 60 post-transplant, when he showed a cutaneous GVHD that was resolved with corticosteroids and cyclosporine.

At day 82 post-transplant, he went to the emergency room with tenesmus and dysuria without fever and macroscopic hematuria. Antibiotic treatment was started without improvement and worsening with the presence of macroscopic hematuria. PCR for BKPyV was performed showing 5.2 log10 copies/mL and 6 log10 copies/mL, and in urine cytology, decoy cells (Figure 1) were observed. Bacterial cultures, PCR for CMV and adenovirus were performed in blood and urine with negative results, excluding other infectious etiologies. The patient was assessed by the Urology service ruling out structural pathology of the genitourinary system. Finally, the patient was diagnosed of Hemorrhagic cystitis secondary to BKPyV.

Treatment with intense hydration, alkalization and forced diuresis was initiated, however, the symptoms worsened by the presence of macroscopic hematuria with clots, causing urinary obstruction and requiring instrumentation for evacuation. Renal function deterioration was observed, previously presenting creatinine of 1.19 mg/dL reaching 1.63 mg/dL. An increased copies of BK virus in serum was detected, showing 6 log10 copies/mL and persistence of the same copies in urine.

After 3 weeks of hydration and no clinical improvement, it was decided to start treatment with cidofovir at low doses (dose of 1 mg/kg weekly). The patient received a total of 4 weekly doses without Probenecid. No nephrotoxicity or myelotoxicity was detected under this treatment, and the patient showed clinical improvement, disappearing the urinary symptoms after the first dose, with improvement in the laboratory findings and decrease in viremia (3 log10 copies/mL), but with persistence of viruria (6 log10 copies/mL).

Discussion

Hemorrhagic cystitis is not an unusual complication in patients who receive a HSCT, with a high morbidity and long-term hospital stay. Approximately 16% of the patients develop this kind of complication, with an incidence between 7-54% in adults and most frequently after allogeneic than auto-HSCT. There are several etiological factors such as post radiotherapy, toxic cause secondary to cytostatic such as cyclophosphamide, busulfan, and etoposide, and viral cause like BKPyV, CMV, and adenovirus.
The typical episode of HC usually occurs between 2 and 4 weeks after HSCT. Clinical manifestations consist in signs and symptoms related to cystitis like dysuria, tenesmus, lower abdominal pain related to hematuria and urinary blood clots.

It is required the presence of these symptoms and plasma viral loads of BKPyV > 7 log_{10} copies/mL to perform the BKPyV-HC diagnosis. It is also important to take into account that viral loads between 3-4 log_{10} copies/mL could be founded in two thirds of patients with BKPyV-HC, however the viruria could help to lead the diagnosis, but it is not a part of the diagnostic criteria and is not useful in the follow-up.

The evidence for the management of BKPyV-HC is limited, and much of the published data consists of non-randomized case series and case reports. There are no prophylactic treatment approved to prevent BKPyV-HC, only supportive measures such as hyperhydration, bladder irrigation, transfusion support and symptomatic therapy. Specific antiviral prophylaxis is not available. Several alternative treatments have been studied, one of them is cidofovir which is an analog of deoxycytidine monophosphate with activity against herpesviruses and polyomaviruses, and is only indicated for the treatment of CMV retinitis in adults with acquired immunodeficiency and without renal impairment, relegating its use as a medicine out of indication. Also, in a recent study, the intravesicular instillation of cidofovir shows a clinical improvement in the 88% of the patients of this study. Exceptional access approval is required to use cidofovir in the treatment of HC secondary to BKPyV such as our patient.

Conclusions

HC secondary to BKPyV is a common and challenging complication in patients after HSCT without having a standard treatment. It is necessary to perform studies and clinical trials to improve the clinical evidence in this kind of patients. The use of intravenous cidofovir is controversial, but from this case report could be considered a safe alternative. It is necessary to perform clinical trials to prove this hypothesis.

References


Figure 1. Decoy cells observed after cytology.