How we manage smoldering multiple myeloma

  • Alessandra Romano | sandrina.romano@gmail.com Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Italy.
  • Claudio Cerchione Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
  • Concetta Conticello U.O.C. di Ematologia, Azienda Policlinico Rodolico San Marco, Catania, Italy.
  • Giovanni Martinelli Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
  • Francesco Di Raimondo Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania; U.O.C. di Ematologia, Azienda Policlinico Rodolico San Marco, Catania, Italy.

Abstract

Smoldering myeloma (SMM) is an asymptomatic stage characterized by bone marrow plasma cells infiltration between 10-60% in absence of myeloma-defining events and organ damage. Until the revision of criteria of MM to require treatment, two main prognostic models, not overlapping each other, were proposed and used differently in Europe and in US. Novel manageable drugs, like lenalidomide and monoclonal antibodies, with high efficacy and limited toxicity, improvement in imaging and prognostication, challenge physicians to offer early treatment to high-risk SMM. Taking advantage from the debates offered by SOHO Italy, in this review we will update the evidence and consequent clinical practices in US and Europe to offer readers a uniform view of clinical approach at diagnosis, follow-up and supportive care in the SMM setting.

*Alessandra Romano e Claudio Cerchione equally contributed as co-first authors

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Kyle RA, Greipp PR. Smoldering multiple myeloma. The New England journal of medicine. 1980;302(24):1347-1349. DOI: https://doi.org/10.1056/NEJM198006123022405

Alexanian R. Localized and indolent myeloma. Blood. 1980;56(3):521-525. DOI: https://doi.org/10.1182/blood.V56.3.521.521

Kyle R, Gertz M, Witzig T, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21 - 33. DOI: https://doi.org/10.4065/78.1.21

Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538-548. DOI: https://doi.org/10.1016/S1470-2045(14)70442-5

Kristinsson SY, Holmberg E, Blimark C. Treatment for high-risk smoldering myeloma. The New England journal of medicine. 2013;369(18):1762-1763. DOI: https://doi.org/10.1056/NEJMc1310911

Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582-2590. DOI: https://doi.org/10.1056/NEJMoa070389

Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564-569. DOI: https://doi.org/10.1056/NEJMoa01133202

Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8(6):59. DOI: https://doi.org/10.1038/s41408-018-0077-4

Rajkumar SV, Landgren O, Mateos MV. Smoldering multiple myeloma. Blood. 2015;125(20):3069-3075. DOI: https://doi.org/10.1182/blood-2014-09-568899

Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33(2):457-468. DOI: https://doi.org/10.1038/s41375-018-0206-x

Bolli N, Maura F, Minvielle S, et al. Genomic patterns of progression in smoldering multiple myeloma. Nature Communications. 2018;9(1):3363.

Maura F, Petljak M, Lionetti M, et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia. 2018;32(4):1044-1048. DOI: https://doi.org/10.1038/leu.2017.345

Storti P, Agnelli L, Palma BD, et al. The transcriptomic profile of CD138(+) cells from patients with early progression from smoldering to active multiple myeloma remains substantially unchanged. Haematologica. 2019;104(10):e465-e469. DOI: https://doi.org/10.3324/haematol.2018.209999

Bustoros M, Sklavenitis-Pistofidis R, Park J, et al. Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology. 2020;38(21):2380-2389. DOI: https://doi.org/10.1200/JCO.20.00437

Kunacheewa C, Manasanch EE. High-risk smoldering myeloma versus early detection of multiple myeloma: Current models, goals of therapy, and clinical implications. Best Pract Res Clin Haematol. 2020;33(1):101152. DOI: https://doi.org/10.1016/j.beha.2020.101152

Calcinotto A, Brevi A, Chesi M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications. 2018;9(1):4832. DOI: https://doi.org/10.1038/s41467-018-07305-8

Zavidij O, Haradhvala NJ, Mouhieddine TH, et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nature Cancer. 2020;1(5):493-506. DOI: https://doi.org/10.1038/s43018-020-0053-3

Perez C, Botta C, Zabaleta A, et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood. 2020;136(2):199-209. DOI: https://doi.org/10.1182/blood.2019004537

Romano A, Parrinello NL, Simeon V, et al. High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling. Scientific Reports. 2020;10(1):1983. DOI: https://doi.org/10.1038/s41598-020-58859-x

Puglisi F, Parrinello NL, Giallongo C, et al. Plasticity of High-Density Neutrophils in Multiple Myeloma is Associated with Increased Autophagy Via STAT3. Int J Mol Sci. 2019;20(14). DOI: https://doi.org/10.3390/ijms20143548

Barberi C, De Pasquale C, Allegra A, et al. Myeloma cells induce the accumulation of activated CD94low NK cells by cell-to-cell contacts involving CD56 molecules. Blood Adv. 2020;4(10):2297-2307. DOI: https://doi.org/10.1182/bloodadvances.2019000953

Moreau P, San Miguel J, Sonneveld P, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology. 2017;28:iv52-iv61. DOI: https://doi.org/10.1093/annonc/mdx096

Perez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586-2592. DOI: https://doi.org/10.1182/blood-2007-05-088443

Sidiqi MH, Aljama M, Kumar SK, et al. The role of bone marrow biopsy in patients with plasma cell disorders: should all patients with a monoclonal protein be biopsied? Blood Cancer Journal. 2020;10(5):52. DOI: https://doi.org/10.1038/s41408-020-0319-0

Aljama MA, Sidiqi MH, Lakshman A, et al. Plasma cell proliferative index is an independent predictor of progression in smoldering multiple myeloma. Blood Adv. 2018;2(22):3149-3154. DOI: https://doi.org/10.1182/bloodadvances.2018024794

Maia C, Puig N, Cedena MT, et al. Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood. 2020;135(26):2375-2387. DOI: https://doi.org/10.1182/blood.2019003382

Mangiacavalli S, Cocito F, Pochintesta L, et al. Monoclonal gammopathy of undetermined significance: a new proposal of workup. Eur J Haematol. 2013;91(4):356-360. DOI: https://doi.org/10.1111/ejh.12172

Bustoros M, Kastritis E, Sklavenitis-Pistofidis R, et al. Bone marrow biopsy in low-risk monoclonal gammopathy of undetermined significance reveals a novel smoldering multiple myeloma risk group. Am J Hematol. 2019;94(5):E146-e149. DOI: https://doi.org/10.1002/ajh.25441

van de Donk NW, Mutis T, Poddighe PJ, Lokhorst HM, Zweegman S. Diagnosis, risk stratification and management of monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Int J Lab Hematol. 2016;38 Suppl 1:110-122. DOI: https://doi.org/10.1111/ijlh.12504

González-Calle V, Mateos MV. Monoclonal gammopathies of unknown significance and smoldering myeloma: Assessment and management of the elderly patients. European Journal of Internal Medicine. 2018;58:57-63. DOI: https://doi.org/10.1016/j.ejim.2018.05.029

Evliyaoglu O, van Helden J, Jaruschewski S, Imöhl M, Weiskirchen R. Reference change values of M-protein, free light chain and immunoglobulins in monoclonal gammopathy. Clin Biochem. 2019;74:42-46. DOI: https://doi.org/10.1016/j.clinbiochem.2019.09.004

Cesana C, Klersy C, Barbarano L, et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. J Clin Oncol. 2002;20(6):1625-1634. DOI: https://doi.org/10.1200/JCO.2002.20.6.1625

Weber DM, Dimopoulos MA, Moulopoulos LA, Delasalle KB, Smith T, Alexanian R. Prognostic features of asymptomatic multiple myeloma. Br J Haematol. 1997;97(4):810-814. DOI: https://doi.org/10.1046/j.1365-2141.1997.1122939.x

Markovic U, Leotta V, Tibullo D, et al. Serum free light chains and multiple myeloma: Is it time to extend their application? Clin Case Rep. 2020;8(4):617-624. DOI: https://doi.org/10.1002/ccr3.2636

Rosiñol L, Bladé J, Esteve J, et al. Smoldering multiple myeloma: natural history and recognition of an evolving type. Br J Haematol. 2003;123(4):631-636. DOI: https://doi.org/10.1046/j.1365-2141.2003.04654.x

Fernández de Larrea C, Isola I, Pereira A, et al. Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression. Leukemia. 2018;32(6):1427-1434. DOI: https://doi.org/10.1038/s41375-018-0013-4

Dispenzieri A, Kyle RA, Katzmann JA, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood. 2008;111(2):785-789. DOI: https://doi.org/10.1182/blood-2007-08-108357

Larsen JT, Kumar SK, Dispenzieri A, Kyle RA, Katzmann JA, Rajkumar SV. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia. 2013;27(4):941-946. DOI: https://doi.org/10.1038/leu.2012.296

Hillengass J, Fechtner K, Weber MA, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 2010;28(9):1606-1610. DOI: https://doi.org/10.1200/JCO.2009.25.5356

Hillengass J, Moulopoulos LA, Delorme S, et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer Journal. 2017;7(8):e599-e599. DOI: https://doi.org/10.1038/bcj.2017.78

Simeone FJ, Harvey JP, Yee AJ, et al. Value of low-dose whole-body CT in the management of patients with multiple myeloma and precursor states. Skeletal Radiol. 2019;48(5):773-779. DOI: https://doi.org/10.1007/s00256-018-3066-6

Jamet B, Bailly C, Carlier T, et al. Imaging of Monoclonal Gammapathy of Undetermined Significance and Smoldering Multiple Myeloma. Cancers (Basel). 2020;12(2). DOI: https://doi.org/10.3390/cancers12020486

Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92(1):50-55. DOI: https://doi.org/10.3324/haematol.10554

Ulaner GA, Landgren CO. Current and potential applications of positron emission tomography for multiple myeloma and plasma cell disorders. Best Practice & Research Clinical Haematology. 2020;33(1):101148. DOI: https://doi.org/10.1016/j.beha.2020.101148

Moulopoulos LA, Dimopoulos MA, Smith TL, et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1995;13(1):251-256. DOI: https://doi.org/10.1200/JCO.1995.13.1.251

Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nature Communications. 2017;8(1):268. DOI: https://doi.org/10.1038/s41467-017-00296-y

Rasche L, Kortüm KM, Raab MS, Weinhold N. The Impact of Tumor Heterogeneity on Diagnostics and Novel Therapeutic Strategies in Multiple Myeloma. Int J Mol Sci. 2019;20(5). DOI: https://doi.org/10.3390/ijms20051248

Ulaner GA, Sobol NB, O'Donoghue JA, et al. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology. 2020;295(3):606-615. DOI: https://doi.org/10.1148/radiol.2020192621

Wennmann M, Kintzelé L, Piraud M, et al. Volumetry based biomarker speed of growth: Quantifying the change of total tumor volume in whole-body magnetic resonance imaging over time improves risk stratification of smoldering multiple myeloma patients. Oncotarget. 2018;9(38). DOI: https://doi.org/10.18632/oncotarget.25402

Rasche L, Kumar M, Gershner G, et al. Lack of Spleen Signal on Diffusion Weighted MRI is associated with High Tumor Burden and Poor Prognosis in Multiple Myeloma: A Link to Extramedullary Hematopoiesis? Theranostics. 2019;9(16):4756-4763. DOI: https://doi.org/10.7150/thno.33289

Alexanian R, Barlogie B, Dixon D. Prognosis of asymptomatic multiple myeloma. Arch Intern Med. 1988;148(9):1963-1965. DOI: https://doi.org/10.1001/archinte.1988.00380090051014

Dimopoulos MA, Moulopoulos A, Smith T, Delasalle KB, Alexanian R. Risk of disease progression in asymptomatic multiple myeloma. Am J Med. 1993;94(1):57-61. DOI: https://doi.org/10.1016/0002-9343(93)90120-E

Atrash S, Robinson M, Slaughter D, et al. Evolving changes in M-protein and hemoglobin as predictors for progression of smoldering multiple myeloma. Blood Cancer Journal. 2018;8(11):107. DOI: https://doi.org/10.1038/s41408-018-0144-x

Kastritis E, Terpos E, Moulopoulos L, et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia. 2013;27(4):947-953. DOI: https://doi.org/10.1038/leu.2012.309

Bolli N, Maura F, Minvielle S, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9(1):3363. DOI: https://doi.org/10.1038/s41467-018-05058-y

López-Corral L, Mateos MV, Corchete LA, et al. Genomic analysis of high-risk smoldering multiple myeloma. Haematologica. 2012;97(9):1439-1443. DOI: https://doi.org/10.3324/haematol.2011.060780

Mailankody S, Kazandjian D, Korde N, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911-1918. DOI: https://doi.org/10.1182/bloodadvances.2017005934

Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(34):4325-4332. DOI: https://doi.org/10.1200/JCO.2012.48.4923

Rajkumar SV, Gupta V, Fonseca R, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013;27(8):1738-1744. DOI: https://doi.org/10.1038/leu.2013.86

Dhodapkar MV, Sexton R, Waheed S, et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood. 2014;123(1):78-85. DOI: https://doi.org/10.1182/blood-2013-07-515239

Khan R, Dhodapkar M, Rosenthal A, et al. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica. 2015.

Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal Residual Disease Assessment Within the Bone Marrow of Multiple Myeloma: A Review of Caveats, Clinical Significance and Future Perspectives. Front Oncol. 2019;9:699. DOI: https://doi.org/10.3389/fonc.2019.00699

Sanoja-Flores L, Flores-Montero J, Garcés JJ, et al. Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018;8(12):117. DOI: https://doi.org/10.1038/s41408-018-0153-9

Bianchi G, Kyle RA, Larson DR, et al. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia. 2013;27(3):680-685. DOI: https://doi.org/10.1038/leu.2012.237

Gonsalves WI, Buadi FK, Ailawadhi S, et al. Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transplant. 2019;54(3):353-367. DOI: https://doi.org/10.1038/s41409-018-0264-8

Costa LJ, Derman BA, Bal S, et al. International harmonization in performing and reporting minimal residual disease assessment in multiple myeloma trials. Leukemia. 2020. DOI: https://doi.org/10.1038/s41375-020-01012-4

Wu V, Moshier E, Leng S, et al. Risk stratification of smoldering multiple myeloma: predictive value of free light chains and group-based trajectory modeling. Blood Adv. 2018;2(12):1470-1479. DOI: https://doi.org/10.1182/bloodadvances.2018016998

Khan R, Dhodapkar M, Rosenthal A, et al. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica. 2015;100(9):1214-1221. DOI: https://doi.org/10.3324/haematol.2015.124651

Sørrig R, Klausen TW, Salomo M, et al. Smoldering multiple myeloma risk factors for progression: a Danish population-based cohort study. Eur J Haematol. 2016;97(3):303-309. DOI: https://doi.org/10.1111/ejh.12728

Mateos MV, San Miguel J. V. Smoldering multiple myeloma. Hematological oncology. 2015;33 Suppl 1:33-37. DOI: https://doi.org/10.1002/hon.2213

González-Calle V, Dávila J, Escalante F, et al. Bence Jones proteinuria in smoldering multiple myeloma as a predictor marker of progression to symptomatic multiple myeloma. Leukemia. 2016;30(10):2026-2031. DOI: https://doi.org/10.1038/leu.2016.123

Mateos MV, González-Calle V. Timing of treatment of smoldering myeloma: early treatment. Blood Adv. 2018;2(21):3045-3049. DOI: https://doi.org/10.1182/bloodadvances.2018021220

Sigurdardottir EE, Turesson I, Lund SH, et al. The Role of Diagnosis and Clinical Follow-up of Monoclonal Gammopathy of Undetermined Significance on Survival in Multiple Myeloma. JAMA Oncol. 2015;1(2):168-174. DOI: https://doi.org/10.1001/jamaoncol.2015.23

Bianchi G, Kyle RA, Colby CL, et al. Impact of optimal follow-up of monoclonal gammopathy of undetermined significance on early diagnosis and prevention of myeloma-related complications. Blood. 2010;116(12):2019-2025; quiz 2197. DOI: https://doi.org/10.1182/blood-2010-04-277566

Kristinsson SY, Pfeiffer RM, Björkholm M, et al. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: a population-based study. Blood. 2010;115(24):4991-4998. DOI: https://doi.org/10.1182/blood-2009-11-252072

Lipe B, Kambhampati S, Veldhuizen PV, Yacoub A, Aljitawi O, Mikhael J. Correlation between markers of bone metabolism and vitamin D levels in patients with monoclonal gammopathy of undetermined significance (MGUS). Blood Cancer Journal. 2017;7(12):646. DOI: https://doi.org/10.1038/s41408-017-0015-x

Witzig TE, Laumann KM, Lacy MQ, et al. A phase III randomized trial of thalidomide plus zoledronic acid versus zoledronic acid alone in patients with asymptomatic multiple myeloma. Leukemia. 2013;27(1):220-225. DOI: https://doi.org/10.1038/leu.2012.236

Lomas OC, Mouhieddine TH, Tahri S, Ghobrial IM. Monoclonal Gammopathy of Undetermined Significance (MGUS)-Not So Asymptomatic after All. Cancers (Basel). 2020;12(6). DOI: https://doi.org/10.3390/cancers12061554

Giallongo C, Tibullo D, Parrinello NL, et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget. 2016;7(52):85764-85775. DOI: https://doi.org/10.18632/oncotarget.7969

Palumbo GA, Parrinello NL, Giallongo C, et al. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci. 2019;20(21). DOI: https://doi.org/10.3390/ijms20215459

Romano A, Parrinello NL, La Cava P, et al. PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy. Expert Rev Mol Diagn. 2018;18(7):675-683. DOI: https://doi.org/10.1080/14737159.2018.1470929

Suen H, Brown R, Yang S, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30(8):1716-1724. DOI: https://doi.org/10.1038/leu.2016.84

Giallongo C, Tibullo D, Camiolo G, et al. TLR4 signaling drives mesenchymal stromal cells commitment to promote tumor microenvironment transformation in multiple myeloma. Cell Death Dis. 2019;10(10):704. DOI: https://doi.org/10.1038/s41419-019-1959-5

Giallongo C, Tibullo D, Puglisi F, et al. Inhibition of TLR4 Signaling Affects Mitochondrial Fitness and Overcomes Bortezomib Resistance in Myeloma Plasma Cells. Cancers (Basel). 2020;12(8). DOI: https://doi.org/10.3390/cancers12081999

Kristinsson SY, Tang M, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica. 2012;97(6):854-858. DOI: https://doi.org/10.3324/haematol.2011.054015

Tete SM, Kipling D, Westra J, et al. Monoclonal paraprotein influences baseline B-cell repertoire diversity and perturbates influenza vaccination-induced B-cell response. Exp Hematol. 2015;43(6):439-447.e431. DOI: https://doi.org/10.1016/j.exphem.2015.02.005

Anderson D, Ali K, Blanchette V, et al. Guidelines on the use of intravenous immune globulin for hematologic conditions. Transfus Med Rev. 2007;21(2 Suppl 1):S9-56. DOI: https://doi.org/10.1016/j.tmrv.2007.01.001

Girmenia C, Cavo M, Offidani M, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84-94. DOI: https://doi.org/10.1016/j.blre.2019.01.001

Vacca A, Melaccio A, Sportelli A, Solimando AG, Dammacco F, Ria R. Subcutaneous immunoglobulins in patients with multiple myeloma and secondary hypogammaglobulinemia: a randomized trial. Clin Immunol. 2018;191:110-115. DOI: https://doi.org/10.1016/j.clim.2017.11.014

Haefliger S, Juskevicius D, Höller S, Buser U, Dirnhofer S, Tzankov A. How to resolve a clinical and molecular puzzle: concomitant monoclonal gammopathy of undetermined significance (MGUS) with neutrophilia and clonal hematopoiesis of indeterminate potential (CHIP). Ann Hematol. 2019;98(10):2431-2432. DOI: https://doi.org/10.1007/s00277-019-03786-9

Cohen AL, Sarid R. The relationship between monoclonal gammopathy of undetermined significance and venous thromboembolic disease. Thromb Res. 2010;125(3):216-219. DOI: https://doi.org/10.1016/j.thromres.2009.01.004

Sallah S, Husain A, Wan J, Vos P, Nguyen NP. The risk of venous thromboembolic disease in patients with monoclonal gammopathy of undetermined significance. Ann Oncol. 2004;15(10):1490-1494. DOI: https://doi.org/10.1093/annonc/mdh385

Srkalovic G, Cameron MG, Rybicki L, Deitcher SR, Kattke-Marchant K, Hussein MA. Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease. Cancer. 2004;101(3):558-566. DOI: https://doi.org/10.1002/cncr.20405

Rajkumar SV. Thalidomide in newly diagnosed multiple myeloma and overview of experience in smoldering/indolent disease. Semin Hematol. 2003;40(4 Suppl 4):17-22. DOI: https://doi.org/10.1053/j.seminhematol.2003.09.007

Detweiler-Short K, Hayman S, Gertz MA, et al. Long-term results of single-agent thalidomide as initial therapy for asymptomatic (smoldering or indolent) myeloma. Am J Hematol. 2010;85(10):737-740. DOI: https://doi.org/10.1002/ajh.21821

Rajkumar SV, Dispenzieri A, Fonseca R, et al. Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia. 2001;15(8):1274-1276. DOI: https://doi.org/10.1038/sj.leu.2402183

Barlogie B, van Rhee F, Shaughnessy JD, Jr., et al. Seven-year median time to progression with thalidomide for smoldering myeloma: partial response identifies subset requiring earlier salvage therapy for symptomatic disease. Blood. 2008;112(8):3122-3125. DOI: https://doi.org/10.1182/blood-2008-06-164228

Mateos MV, Hernández MT, Giraldo P, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med. 2013;369(5):438-447. DOI: https://doi.org/10.1056/NEJMoa1300439

Mateos MV. When to initiate treatment in smoldering multiple myeloma. Clin Adv Hematol Oncol. 2017;15(10):751-753.

Paiva B, Mateos MV, Sanchez-Abarca LI, et al. Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: a longitudinal analysis. Blood. 2016;127(9):1151-1162. DOI: https://doi.org/10.1182/blood-2015-10-662320

Lonial S, Jacobus S, Fonseca R, et al. Randomized Trial of Lenalidomide Versus Observation in Smoldering Multiple Myeloma. J Clin Oncol. 2020;38(11):1126-1137. DOI: https://doi.org/10.1200/JCO.19.01740

Jagannath S, Laubach J, Wong E, et al. Elotuzumab monotherapy in patients with smouldering multiple myeloma: a phase 2 study. Br J Haematol. 2018;182(4):495-503. DOI: https://doi.org/10.1111/bjh.15384

Landgren CO, Chari A, Cohen YC, et al. Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: a randomized, open-label, multicenter, phase 2 study (CENTAURUS). Leukemia. 2020;34(7):1840-1852. DOI: https://doi.org/10.1038/s41375-020-0718-z

Brighton TA, Khot A, Harrison SJ, et al. Randomized, Double-Blind, Placebo-Controlled, Multicenter Study of Siltuximab in High-Risk Smoldering Multiple Myeloma. Clin Cancer Res. 2019;25(13):3772-3775. DOI: https://doi.org/10.1158/1078-0432.CCR-18-3470

Manasanch EE, Han G, Mathur R, et al. A pilot study of pembrolizumab in smoldering myeloma: report of the clinical, immune, and genomic analysis. Blood Adv. 2019;3(15):2400-2408. DOI: https://doi.org/10.1182/bloodadvances.2019000300

Musto P, La Rocca F. Monoclonal antibodies in newly diagnosed and smoldering multiple myeloma: an updated review of current clinical evidence. Expert Rev Hematol. 2020;13(5):501-517. DOI: https://doi.org/10.1080/17474086.2020.1753502

Korde N, Carlsten M, Lee MJ, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014;99(6):e81-83. DOI: https://doi.org/10.3324/haematol.2013.103085

Wichert S, Juliusson G, Johansson Å, et al. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS One. 2017;12(2):e0171205. DOI: https://doi.org/10.1371/journal.pone.0171205

Golombick T, Diamond TH, Manoharan A, Ramakrishna R. Addition of Rice Bran Arabinoxylan to Curcumin Therapy May Be of Benefit to Patients With Early-Stage B-Cell Lymphoid Malignancies (Monoclonal Gammopathy of Undetermined Significance, Smoldering Multiple Myeloma, or Stage 0/1 Chronic Lymphocytic Leukemia): A Preliminary Clinical Study. Integr Cancer Ther. 2016;15(2):183-189. DOI: https://doi.org/10.1177/1534735416635742

Golombick T, Diamond TH, Manoharan A, Ramakrishna R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol. 2012;87(5):455-460. DOI: https://doi.org/10.1002/ajh.23159

Korde N, Roschewski M, Zingone A, et al. Treatment With Carfilzomib-Lenalidomide-Dexamethasone With Lenalidomide Extension in Patients With Smoldering or Newly Diagnosed Multiple Myeloma. JAMA Oncol. 2015;1(6):746-754. DOI: https://doi.org/10.1001/jamaoncol.2015.2010

Published
2020-09-21
Keywords:
Smoldering multiple myeloma
Statistics
  • Abstract views: 665

  • PDF: 107
  • HTML: 0
How to Cite
Romano, A., Cerchione, C., Conticello, C., Martinelli, G., & Di Raimondo, F. (2020). How we manage smoldering multiple myeloma. Hematology Reports, 12(s1). https://doi.org/10.4081/hr.2020.8951

Most read articles by the same author(s)