SARS-CoV-2, “common cold” coronaviruses’ cross-reactivity and “herd immunity”: The razor of Ockham (1285-1347)?

Nicola Petrosillo
National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, Rome, Italy

Non sunt multiplicanda entia sine necessitate

After the rapid spread of coronavirus-19 infectious disease (COVID-19) worldwide between February and April 2020, with a total of 5,267,419 confirmed cases and 341,155 deaths as of May 25, 2020,1 in the last weeks we are observing a decrease in new infections in European countries, and the confirmed cases are not as severe as in the past, so much so that the number of patients transferred to intensive care for the worsening of the systemic and pulmonary disease is dramatically decreasing.

In Italy, the lockdown of social and work activities begun on March 10th, 2020; following a decrease of new confirmed COVID cases, on May 4th there was a partial opening of these activities without any impact on the trend on new confirmed cases. Indeed, the epidemic curve has been constantly bending from 6,557 on 21st May to 300 new cases on 25th May. Furthermore, currently most of admitted COVID-19 cases appear paucisymptomatic or mild to moderate infections, and the number of COVID-19 patients in intensive care is stably decreasing.2

At the beginning of the epidemic, the number of secondary infections (R0) produced by a COVID-19 case in a population, where everyone is susceptible ranged from 2 to 2.5.3 By using the formula 1-(1/R0) was possible to estimate that the minimum (‘critical’) level of population immunity, acquired via vaccination or naturally-induced (i.e. after recovery from COVID-19), to halt the spread of infection in that population should be around 60%.

Where are we now? According with the literature,4 acute antibody responses to SARS-CoV-2 occur in almost all patients with COVID-19, even though the neutralising activity of these antibodies is under investigation. The seroprevalence surveys in Europe are ongoing, with limited data. In Lombardy region in Italy, that was the center of a dramatic cluster of COVID-19 infections, a seroprevalence survey on about 66,000 persons, healthcare workers and citizens on quarantine, evidenced a seroprevalence of 13.6%;5 however, lower degrees and SARS-CoV-2.6 Six different unexposed donors with IgG against “common cold” coronaviruses had indeed SARS-CoV-2-reactive CD4+ T cells, demonstrating that the cross-reactivity is relatively widely distributed.7 Virologists are claiming that there is no evidence of SARS-CoV-2 mutations causing less virulence and change of pathogenicity,8 therefore, bending the epidemic curve could be simply the effect of progressive exhaustion of people susceptible to infection either due to a COVID-19 infection or for previous/recent “common cold” coronaviruses’ infections.

We have no certainty on how SARS-CoV-2 pandemic will evolve in the coming months. However, instead of concentrating most of the efforts on “unlikely” therapies, such as the case of hydroxychloroquine,9 it would be better to know how the immune response to this virus develops and how previous exposures to “old” coronavirus can influence the immunity of the population against SARS-CoV-2.

References