An usual approach to treatment of a case of multi-drug resistance *Pseudomonas aeruginosa* peritonitis: parenteral and intra-abdominal colistin

Ian May, Maha Abu-Khdeir, Roland Alexander Blackwood

Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA

Abstract

Infections caused by *Pseudomonas aeruginosa* are becoming more common and increasingly more difficult to treat due to the continued development of drug resistance. While sensitivity to colistin (polymyxin E) is well known, it is frequently avoided due to concerns of nephrotoxicity. Reported here is a case of a multi-drug resistance pseudomonal typhlitis, bacteremia and pleural cavity infection that required significant intensive care, and serial abdominal washouts. Intra-peritoneal tobramycin in combination with broad-spectrum aminoglycosides and parenteral parenteral colistin therapy can be used in complicated clinical settings with appropriate nephroprotection.

Case Report

A seven year-old girl diagnosed with Burkitt’s Leukemia one month prior to admission was transferred to a tertiary care center from an OSH intensive care unit following a rapid clinical deterioration. On transfer the patient was febrile (38°C), hypotensive, tachycardic and complained of progressive abdominal pain, distention and guarding. The patient had been febrile and neutropenic for the week prior to transfer.

One month prior to the current admission the patient developed a febrile illness. A hematologic evaluation suggested an initial diagnosis of pre B-cell acute lymphoblastic leukemia. The initial chemotherapy included vincristine, pegaspargase, dexamethasone and intrathecal cytarabine but then cytogenetic analysis revealed the diagnosis of Burkitt’s leukemia and a course of cyclophosphamide, doxorubicin, vincristine and dexamethasone was administered prior to discharge. Eleven days following discharge, the patient was re-admitted to the OSH because of increasing abdominal pain, non-bloody diarrhea, fever and neutropenia.

The patient received meropenem (20 mg/kg/dose Q 8 hours) and vancomycin for presumed sepsis with fever and neutropenia. Liposomal amphotericin B was added to provide antifungal coverage and pneumocystis pneumonia prophylaxis with trimethoprim/sulfamethoxazole (TMP/SMX) was continued. Blood cultures showed no growth. An ultrasound and computerized tomography (CT) of the abdomen revealed no abnormalities. Intrathecal methotrexate and intravenous vincristine were administered per chemotherapy protocol. However 10 days after chemotherapy, the patient’s respiratory status worsened and she became hemodynamically unstable. The patient was transferred to our hospital for extracorporeal membrane oxygenation (ECMO).

Correspondence: R. Alexander Blackwood, Pediatrics Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, D5101 Medical Professional Building/SPC 5178, 1500 East Medical Center Drive, Ann Arbor, 48109-5178, MI, USA.

Tel. +1.734.7632440 - Fax: +1.734.2323859.

E-mail: rab@umich.edu

Key words: *Pseudomonas aeruginosa*, typhlitis, pediatric, Burkitt’s leukemia, intra-abdominal tobramycin, colistin (polymyxin E).

Conflict of interests: the authors report no conflict of interests.

Received for publication: 19 March 2012.

Revision received: 18 June 2012.

Accepted for publication: 20 June 2012.

This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0).

©Copyright I. May et al., 2012

Licensee PAGEPress, Italy

Infectious Disease Reports 2012; 4:e36

Licensee PAGEPress, Italy

Infectious Disease Reports 2012; 4:e36
the small bowel without visible perforation. Ascitic fluid grew a rare quantity of \textit{P. aeruginosa}, with a different susceptibility pattern than the isolate from the pleural fluid (Table 1). Blood cultures drawn from the central intravenous line on day three grew two isolates of \textit{P. aeruginosa} which displayed two different susceptibility patterns, and were also different from the isolates from the peritoneal and pleural fluid. At this point, there were 4 different pseudomonas aeruginosa isolates growing from pleural fluid, peritoneal fluid and blood and continuous renal replacement therapy (CRRT) was initiated for anuric renal failure. The patient remained neutropenic during the first 4 days in the PICU but then the WBC count reached 36 K/mm3 on day five with an absolute neutrophil count of 4.0 K/mm3 and remained elevated until the patient recovered from the infection. Additionally, during a trial off CRRT on day five, the patient remained febrile (39.8°C).

Following the use of meropenem, levofloxacin (10 mg/kg/dose Q 24 hours), ciprofloxacin (15 mg/kg/dose Q 12 hours), cefepime (50 mg/kg/dose Q 12 hours), ceftazidime and tobramycin in different combinations and based on the susceptibility profiles of the different pseudomonal isolates (Figure 1) a final change of the regimen to intravenous colistin (2.5 mg/kg/dose Q 12 hours), ceftazidime (50 mg/kg/dose Q 12 hours) and tobramycin (8 mg/kg/dose Q 24 hours) was made. Ceftazidime was continued despite intermediate resistance because of the known synergy between beta-lactams and aminoglycosides. However formal synergy testing was not performed. Intravenous vancomycin and metronidazole were continued for empiric enterococcal and anaerobic coverage because of suspected intestinal perforation. This regimen was initiated on hospital day eleven. The peritoneal fluid culture obtained during an abdominal washout on day 14 still grew \textit{Pseudomonas aeruginosa} with variable susceptibilities raising the concern of evolving resistance. Since the patient’s clinical status showed no improvement despite parenteral administration of antibiotics with evidence of \textit{in vitro} activity against the microorganism, an attempt to control the source of the infection by concomitant administration of a selective digestive tract decontamination regimen along with an intraperitoneal antibiotic was made. Therefore, the patient received a regimen of oral colistin (2 mg/kg/dose Q 8 hours), tobramycin (1.5 mg/kg/dose) Q 8 hours and nystatin (500,000 units oral suspension Q 8

Figure 1. Timeline of the patient’s course in our hospital demonstrating the parenteral drug combinations (green arrows), selective digestive tract decontamination (red arrow) and intraperitoneal (IP) tobramycin (blue arrow). In the lower part of the figure, we plotted the patient’s positive cultures (+) and the first negative from blood and peritoneal sites (-).

<table>
<thead>
<tr>
<th>Day after admission</th>
<th>Pleural fluid Day 1 MIC</th>
<th>Blood Day 3 MIC</th>
<th>Peritoneal fluid Day 4 MIC</th>
<th>Pleural fluid Day 7 MIC</th>
<th>Peritoneal fluid Day 14 MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefepime</td>
<td>8 S</td>
<td>16 I</td>
<td>8 S</td>
<td>≥64 R</td>
<td>16 I</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>32 S</td>
<td>>64 R</td>
<td>>64 R</td>
<td>128 R</td>
<td>32 S</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>---</td>
<td>>16 R</td>
<td>---</td>
<td>16 I</td>
<td>8 S</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>---</td>
<td>>16 R</td>
<td>>16 R</td>
<td>≥16 R</td>
<td>>16 R</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≥16 R</td>
<td>>8 R</td>
<td>>8 R</td>
<td>≥16 R</td>
<td>>8 R</td>
</tr>
<tr>
<td>Meropenem</td>
<td>≥16 R</td>
<td>>8 R</td>
<td>>8 R</td>
<td>≥16 R</td>
<td>≥16 R</td>
</tr>
<tr>
<td>Doripenem</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>>2</td>
<td>---</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>8 I</td>
<td>2 S</td>
<td>2 S</td>
<td>8 I</td>
<td>≥1 S</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>≤1 S</td>
<td>≤1 S</td>
<td>≤1 S</td>
<td>2 S</td>
<td>≤1 S</td>
</tr>
<tr>
<td>Amikacin</td>
<td>16 S</td>
<td>8 S</td>
<td>8 S</td>
<td>32 I</td>
<td>≤4 S</td>
</tr>
<tr>
<td>Colistimethate</td>
<td>---</td>
<td>----</td>
<td>2 S</td>
<td>---</td>
<td>2 S</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.5 S</td>
<td>2 I</td>
<td>1 S</td>
<td>2 I</td>
<td>0.5 S</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>4 I</td>
<td>8 R</td>
<td>4 I</td>
<td>≥8 R</td>
<td>2 S</td>
</tr>
</tbody>
</table>

MIC, minimal inhibitory concentrations; I, intermediate; R, resistant; S, susceptible.
hours) through her nasogastric tube. To achieve adequate intraperitoneal concentrations of the aminoglycoside, the patient received an abdominal irrigation with 450 mL of 0.48 mg/mL tobramycin during an abdominal washout procedure. Two Jackson-Pratt drains were placed in each side of her abdomen to provide a route for intraperitoneal administration of tobramycin. Intraperitoneal tobramycin was administered with an average of 70 mL of 0.48 mg/mL in each drain for a dwelling time of 30 min, after which it was removed by suction through her wound vacuum-associated closure system. The treatment was repeated every 2-3 hours.

Two days following the administration of the intraperitoneal tobramycin, peritoneal cultures showed no growth and the patient’s WBC count started to normalize. The patient’s creatinine remained within the range of 0.5 and 0.6 mg/dL during the course of the treatment and CRRT was discontinued the following week. Her creatinine showed a brief increase to 1.2 mg/dL when the CRRT was discontinued but rapidly normalized. Tobramycin trough levels were between 1.1-2.3 ug/mL during the intraperitoneal administration. The abdomen was closed few days after the sterilization of her cultures. Antibiotic treatment with IV colistin, tobramycin, and ceftazidime and oral colistin, tobramycin and nystatin was continued for additional fourteen days and blood cultures remained negative. At the end of her treatment course, chemotherapy was resumed with no additional infectious complications to our knowledge.

Discussion

This case represents an unorthodox management of an immunocompromised patient with a life-threatening infection, caused by a multi-drug resistant organism in a location where antibiotics have limited bio-availability. The primary infectious process is believed to be typhilitis. Micro-perforation of the bowel and subsequent contamination of the peritoneal cavity is most likely the underlying cause of the sepsis even though the first positive culture that led to the identification of MDR Pseudomonas was retrieved from the pleural cavity. The initial organism was resistant to meropenem. Based on the available susceptibility profiles, the antipseudomonal coverage was modified several times to different combinations of cepefime, ceftazidime, ciprofloxacin and tobramycin. However, isolates rapidly developed resistance to all these antibiotics except the aminoglycoside. The patient remained in a critical condition with significant abdominal tenderness.

Blood, peritoneal and pleural cultures demonstrated the growth of Pseudomonas aeruginosa isolates with variable resistance patterns. It is unclear whether the variable resistance patterns represent different pseudomonal isolates or the emergence of localized resistance of a single invasive organism. The patient’s clinical condition and abdominal symptoms were suggestive of an ongoing infectious process. Isolation of pseudomonas from fresh peritoneal samples several days after IV antibiotic administration raised two concerns; first, that the source of infection, the GI tract, continued to seed bacteria into the peritoneal cavity, and second, that the parental route did not provide an effective distribution of the antibiotics into the peritoneum. In light of the different susceptibility patterns and the absence of additional treatment options if resistance continued to evolve an unorthodox but comprehensive approach was taken with the antibiotic regimen. The organism was susceptible to colistin and tobramycin so both antibiotics were given parenterally hoping that they would limit further development of resistance. Due to tobramycin’s poor distribution into the peritoneal cavity, intraperitoneal instillations of tobramycin were performed. Because of the concern of a potential persistent intestinal leak secondary to a perforation, a regimen of selective digestive tract decontamination was started. Oral colistin, tobramycin and nystatin was administered. Since some sensitivity to ceftazidime existed, it was maintained for potential synergy between the beta-lactam and the aminoglycoside. Sterilization of the peritoneal cavity was achieved using this combination in few days. The patient’s clinical condition continued to improve. Her renal function remained within normal during the treatment. Polymyxins are bactericidal antibiotics that have been used in clinical practice since 1959. However, as the aminoglycosides became more available in the 1970’s, their use declined due to their toxicity profiles. The major adverse effects of the polymyxins are nephrotoxicity and neurotoxicity. Nephrotoxicity is dose-dependent and reversible upon discontinuation of the antibiotic. It appears to be less common than previously reported with the newer preparations of polymyxins. Neurotoxicity is rare and results in a variety of manifestations ranging from focal neurological deficits to neuromuscular blockade resulting in respiratory failure. The recent emergence of MDR pathogens has led to the re-introduction of polymyxins in clinical practice. Intravenous colistin (polymyxin E) is now more commonly used in the management of MDR nosocomial infections with gram-negative bacteria. It has been increasingly used in treatment of MDR gram-negative infections in patients without cystic fibrosis, specifically in critically ill and burn patients. It also appears to be well-tolerated in this age-group. Oral colistin is safely used in digestive tract decontamination regimens as pre-operative prophylaxis or in infection control in ICU’s. It is not systematically absorbed when administered orally. In this specific case, we believe that the digestive tract decontamination regimen had an important role in controlling the source of the infection as evidenced by the improvement of the patient’s clinical status and the sterilization of her cultures a few days following its initiation. Intraventricular and intrathecal administration of colistine for treatment of MDR Pseudomonas aeruginosa and Acinetobacter baumannii in ventriculitis and meningitis has been reported. In addition, inhalational colistine is used in patients with cystic fibrosis.

Conclusions

In the setting of a MDR Pseudomonas infection, creative approaches to antimicrobial therapy may be warranted. The use of polymyxins and intraperitoneal administration of antibiotics can be used in complicated intra-abdominal infection with appropriate nephroprotection and close monitoring of renal and neurological function.

References