Evaluation of extended spectrum beta lactamase enzymes prevalence in clinical isolates of Escherichia coli

Ronak Bakhtiari,1 Jalil Fallah Mehrabadi,2 Hedroosha Molla Agamirzaei,3 Aliar Sabbaghi,3 Mohammad Mehdi Soltan Dailal1,4
1Dev. Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science;
2MARS Bioinformatics Institute, Tehran;
3Faculty of Basic and Medical Sciences, Department of Microbiology, Islamic Azad University, Zanjan Branch, Zanjan;
4Antibiotic Resistant Research Center, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Resistance to β-lactam antibiotics by gram-negative bacteria, especially Escherichia coli (E. coli), is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly E. coli is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of β-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 E. coli isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on E. coli isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin’s indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) E. coli isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.

Introduction

Different strategies are used to protect bacteria from destructive effects of antibiotics. One of the most important resistant mechanisms by bacteria against antibiotics is production of enzymes that hydrolyze the beta lactam ring of antibiotics. The action of these antibiotics is via the inhibition of cell wall synthesis and bacterial cell division. Extended spectrum beta lactamase (ESBLs) are specific types of beta lactamases with particular mutation, making them capable of destroying expanded cephalosporin (ceftaxime, cefotaxime) and azetronam, but don’t have activity against carbapenems (imipenem), cephemycins (cephoxitin) and beta lactam inhibitor (clavulanic acid, sulbactam). On the other hand, development of novel antibiotics and promotion of their use in the treatment of bacterial infectious diseases led to the appearance of newer enzyme classes in beta lactamase super family particularly AmpC. ESBL enzymes were discovered in early 1980 and these are classified based on four functional groups: A,B,C and D that ESBLs is placed in A groups and derived from principal beta lactamases (TEM-1, TEM-2 and SHV-1) by substitution one or more amino acids in their catalytic cites. Among Enterobacteriaceae, Escherichia coli (E. coli) and Klebsiella spp. are more known to produce ESBLs. E. coli is the most commonly encountered gram negative pathogen in nosocomial infections. Recently, the occurrence of ESBLs is rising worldwide; owing to identification of these strains in clinical laboratories to detect this resistance is very important. According to the recommendation of the Clinical and Laboratory Standards Institute (CLSI), one of the current methods for detection of ESBLs is an initial screening for the CLSI recommended cephalosporin’s indicators especially ceftazidime and cefotaxime, subsequently performing of confirmatory tests with clavulanic acid (as one inhibitor of ESBLs). In this test, if zone of inhibition in the presence of clavulanic acid in compare absence clavulanic acid is increased, those organisms are recognized as a ESBLs producer. Complete detection of β-lactamase enzymes is essential for resistance control and successful treatment via the appropriate prescription of β-lactam drugs. Therefore, we focused this study to determine the incidence of ESBLs producing strains in clinical isolates.

Materials and Methods

Bacterial strains

Five hundred clinical samples were collected from Tehran hospitals (kid’s medical center, Shariati, Mofid, Ali Asghar, Eghbal, Hakim, Valiarsi, Khathamolaniah and Enam Khomeini) as of the following sources: urine, stool, blood, wound and other clinical samples of sick people. Two hundred E. coli isolates were detected by standard biochemical tests (IMVIC) by using TSI agar, SIM agar, Simmon Citrate agar, MR-VP medium and Urea media. Owing to store, all strain of E. coli isolated were cultured in skim milk and were stocked up at -70°C prior for testing.

Antimicrobial susceptibility testing

To performing initial screening of ESBLs was used from Disk diffusion method6 on E. coli isolates. In this method, after the preparation of Muller-Hinton agar plates, microbial suspensions corresponding with concentration of 0.5 McFarland were completely distributed on the surface of plates. The following antibiotics and concentration were used: ceftaxime (30 µg), ceftazidime (30 µg), gentamicin (10 µg), amoxicillin (30 µg), imipenem (10 µg), nalidixic acid (30 µg), streptomycin (10 µg), cotrimoxazole (1.25 µg), ciprofloxacin (5 µg) and chloramphenicol (30 µg) (Mast Diagnostics Ltd., Bootle, Merseyside, UK). After 24 h incubation of plates at 37°C, using a...
ruler, the zone of inhibition around each disk was measured and then compared with the standards of CLSI, followed by reported as resistant, intermediate or sensitive. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin’s indicators which used from Ceftazidime (30 µg), Ceftazidime/Clavulanate (30/10 µg), Cefotaxime (30 µg) and Cefotaxime/Clavulanate (30/10 µg) (Mast Diagnostics Ltd.). After 24 h incubation of plates at 37°C, ESBLs production was confirmed by ≥5 mm increase in the zone of inhibition in the presence of clavulanic acid compared to the absence of clavulanic acid.

Results

Two hundred clinical isolates of E. coli were collected during a period of 6 months (Figure 1). Resistant pattern of 200 E. coli isolates to 10 antimicrobial agents are shown in Figure 2. Most of the isolates indicated high resistance to oximinocephalosporins, while they remained susceptible to imipenem. Up to 70% isolates exhibited the MDR (Multi Drug Resistance) phenotype.

In Disk diffusion method, 128 (64%) E. coli isolates which resistant to ceftazidime and cefotaxime were selected for possible positive ESBLs and followed by Combined Disk assay. In Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers (Figure 3). β-lactamase-producing E. coli isolates were more common in urine samples (80%).

Discussion

This study was conducted in Tehran hospitals such as kid’s medical center, Shariati, Mofid, Ali Asghar, Eghbal, Hakim, Valiasr, Khatamolanbia and Emam Khomeini. Among 500 clinical samples from sick people, 200 E. coli were isolates. ESBL screening and confirmation were performed by Disk diffusion method and Combined Disk assay, respectively. E. coli ESBLs positive culture cases were 89.8% alternatively. The resistant rate of E. coli to cephalosporin’s indicators in this study was higher than that (32.11%) in the study of Nakhai et al which reported from Iran. The results indicate that the ESBLs prevalence in community acquired infections particularly in E. coli is rising in Iran. In recent years, studies were reported that significant proportion of Enterobacteriaceae isolates showed multidrug resistance against extended cephalosporins and aztreonam, that ESBLs production have the predominant role in this field. So, correct detection of them led to prevent from failure treatment and suitable prescription drugs.

The high prevalence of ESBL suggests that diagnostic laboratories should be better than phenotypic screen for ESBLs with ceftazidime as well as cefotaxime; they should still perform clavulanate synergy tests on resistant isolates, but ESBLs may not be detected by standard laboratory methods because susceptibility results for cephalosporins may fall within the sensitive category and reported as false negative ESBLs which resulting from another factors such as AmpC that cover the effect of ESBL enzymes via creating resistance to clavulanate.

In this survey among of 128 (64%) screened E. coli isolates in Disk diffusion method, only 115 (89.8%) isolates were selected for ESBLs producers by Combined Disk according to the CLSI. Negative ESBLs in other isolates (10.2%) could be resulting other factors such as novel beta lactamase enzymes.

Conclusions

Today there are many β-lactam antibiotics and many more β-lactamase enzymes, including extended spectrum β-lactamases (ESBLs) and AmpC β-lactamases that make a many problem in detection of ESBLs. So, this investigation suggests using other methods including inhibitors of AmpC in confirmatory test for correct detection of ESBLs.

References

6. Eagye JK, Kuti LJ, Nicolau PD. Pharmac-