The rotational model: a new hypothesis for thylakoid stacking

Main Article Content

Antonios Castorinis *
(*) Corresponding Author:
Antonios Castorinis |


The most enigmatic feature of mature thylakoids of Angiosperms is the presence of piles of membranous discs forming the cylindrical structures known as grana. Although some models aim to elucidate their formation, until now the mechanism governing the architecture of thylakoid stacks remains obscure. In this work a new model is presented aiming to explain the way thylakoids stack. In comparison with previous models, this model proposes a dynamic mechanism for the rapid selfassembly of thylakoid stacks and their subsequent disassembly under the influence of a variety of physicochemical factors and is consistent with the evolutionary origin of these membranes and their ontogenetic continuity. The model proposes that, under the influence of attractive electrostatic forces, the membranes come closer in a parallel alignment and the photosystem II/light harvesting complexes migrate laterally forming circular aggregates. Finally the thylakoids rotate around the vertical axis of the superimposed aggregates, under the action of a torque.

Downloads month by month


Download data is not yet available.

Article Details