Effectiveness of a conservation energy model for febrile neutropenia in children with cancer

Khoirunnisa Khoirunnisa,1,2 Allenidekania Allenidekania,1 Happy Hayati1
1Faculty of Nursing, Universitas Indonesia; 2Akademi Keperawatan RSPAD Gatot Soebroto Jakarta

Abstract

Febrile neutropenia is a complication of chemotherapy that occurs in children with cancer. This paper aimed to provide an overview of the application of the Levine Energy Conservation Model for treating fever neutropenia in children with cancer. The method involved a case study of five children with cancer treated for febrile neutropenia using the nursing process approach. The nursing process, according to the Levine Energy Conservation Model, focuses on increasing the body’s adaptability through four forms of conservation, namely, the conservation of energy, personal integrity, structural integrity, and social integrity. Trophicognosis in the five cases under management identified hyperthermia and the risk of infection transmission. Other nursing problems were nutritional imbalances that were less than the body’s needs and the risk of bleeding. These problems can hinder the process of adapting children with cancer to the challenges of disease and the treatment of side effects in achieving self-integrity.

Introduction

There are around 11,000 cases of children with cancer in Indonesia every year, and there are around 650 cases of cancer in children in Jakarta.1 Following the Riskesdas report of 2016, the occurrence of leukemia in Indonesia was determined at 2.8 cases per 100,000, with eye cancer at 0.9 cases per 100,000. In cases of child cancer, chemotherapy is the main treatment option. However, chemotherapy can also cause some side effects, both physical and psychological, in both children and adults.2 The content of cytotoxic chemotherapy drugs can suppress the process of hematopoiesis that occurs in the bone marrow.3 This causes immunosuppression, which results in a decrease in the number of blood components, including the neutrophils in white blood cells. The decrease in the number of neutrophils is called neutropenia.4

Neutropenia is a complication frequently found in children suffering from cancer who are actively undergoing chemotherapy.5 Neutropenia is a condition in which neutrophil counts in white blood cells are less than normal (1000 mm3).6 Febrile neutropenia is a state of neutropenia accompanied by symptoms of an increase in body temperature. Febrile neutropenia is the most common complication in hospitals in immunosuppressed children, with fever as a sign of infection.7

The care provided to overcome neutropenia must be implemented immediately because neutropenia can increase the risk of infection, which can worsen a child’s condition. The treatment of neutropenia involves the multidisciplinary participation of health workers. Nurses have a role in the management of neutropenia, namely, in terms of preventing infection.8,9 Levine’s energy conservation nursing model focuses on maintaining the body’s energy. The model covers four forms of bodily conservation, namely, the conservation of energy, personal integrity, social integrity, and structural integrity. Infec tion of the body can increase the metabolism in an individual’s body. This arises due to an increase in body temperature, which causes an increase in the rate of metabolism so that the energy needed becomes greater.10

Energy conservation, as developed by Mary J. Levine, aims to maintain the integrity of bodily functions and improve individual adaptation to disturbances that might occur, which could have an impact on achieving an optimal energy balance for each individual.11 The final result of the energy balance process in children is their adaptation to such disturbances, which can improve their quality of life.

Materials and Methods

This research used a case study with a nursing process approach. The nursing process was carried out by applying the Levine Energy Conservation Model and was conducted using critical thinking, including an assessment, trophicognosis, composition of hypotheses, interventions, and nursing evaluations. The subjects of this study were five children with cancer who experienced febrile neutropenia, with absolute neutrophil counts (ANCs) <1000/mm3.
that the handling of children who experienced an increase in body temperature of more than 38°C was given paracetamol and antibiotics as empirical therapy. This is in line with the concept of the energy conservation model developed by Levine. The child’s body required to do energy conservation to speed up the healing process in the child’s body.

Two of the five cases examined, the patients had poor nutritional status. Children’s nutritional status is related to the metabolic processes of the child’s body to obtain energy. Children with poor nutritional status will interfere with the metabolic processes that occur in the child’s body so that the energy produced is not optimal. Whereas, in accordance with Levine’s energy conservation model, the child’s body needs to carry out energy maintenance to accelerate the healing process and keep the child from the risk of infection that increases due to the state of neutropenia they experience. Child energy conservation also can be seen from the child’s hemoglobin value. Hemoglobin is a protein that carries oxygen and nutrients containing iron, so the value of hemoglobin is related to the status of oxygenation and child nutrition. Of the five cases observed, the children experienced a significant decrease in hemoglobin value, i.e., less than 10 gr/dL. This certainly has an impact on the child’s oxygenation status. One child showed mild chest retraction as an effort to compensate the body to increase oxygen intake into the body.

In five cases above, all the patients experienced a decrease in the number of leukocytes and ANC. Decreasing the number of ANCs that were less than normal could increase the children’s risk of infection. In children suffering from cancer who are undergoing chemotherapy, the incidence of neutropenia is very likely to occur because of the reaction of chemotherapy drugs that are cytotoxic, causing children to experience immunosuppressants. Immunosuppressants put children at risk for infection. This can increase the energy needs of the child’s body as an effort in healing from infection. It is suitable for Levine’s energy conservation model that the child’s body needs to do energy conservation to accelerate the healing process in the child’s body.

The handling of the risk of infection can be done with infection prevention management. Management of prevention of infection carried out involves the multidisciplinary role of health workers, including doctors, nurses, other health workers who work in hospitals, and families. Management of prevention of infection includes personal hygiene, oral hygiene, environmental

Discussion

This case study discussed five cases of malignancy in children, namely acute lymphoblastic leukemia, acute myeloblastic leukemia, osteosarcoma, and rhabdomyosarcoma. In these five cases of malignancy, the same nursing problems were found, namely hyperthermia. The increase in body temperature experienced by the children in the five cases managed reached more than 38°C. This was consistent with the results of research conducted by Rasmy et al., which stated that children with cancer would experience a fever. Widy et al. also stated that there were around 58% of cancer patients in children who had a fever. Neutrophils are granulocyte cells that are effective in maintaining the body, especially against bacterial infections. The mechanism of fever in the case of neutropenia is uncertain, but it may occur due to the release of endogenic pyrogens from the bone marrow where blood cells are produced.

The treatment of hyperthermia carried out in the five cases collaborated with the administration of paracetamol and regular water compresses. This was in line with the research conducted by Budiana and Febiani.
neutropenia as a complication of chemotherapy. One of the effects of chemotherapy is the suppression of blood cell production in the bone marrow, which results in a decrease in ANC value. This decrease in ANC can increase a child’s risk of infection. The application of Levine’s energy conservation model in children with febrile neutropenia can help the child’s body manage its energy. So that the body’s energy can be used to help the body’s healing process from infection. The evaluation results in each case showed varied results and indicated adaptability in maintaining conservation principles, one of which was a decrease in body temperature, as a sign of infection. Nurses are expected to be able to provide infection prevention interventions in children with cancer.

Conclusions
Cancer children who are undergoing chemotherapy are very likely to experience neutropenia as a complication of chemotherapy. One of the effects of chemotherapy is the suppression of blood cell production in the bone marrow, which results in a decrease in ANC value. This decrease in ANC can increase a child’s risk of infection. The application of Levine’s energy conservation model in children with febrile neutropenia can help the child’s body manage its energy. So that the body’s energy can be used to help the body’s healing process from infection. The evaluation results in each case showed varied results and indicated adaptability in maintaining conservation principles, one of which was a decrease in body temperature, as a sign of infection. Nurses are expected to be able to provide infection prevention interventions in children with cancer.

References