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Abstract

On 26 December 2004 and 28 March 2005
two large earthquakes occurred between the
Indo-Australian and the southeastern Eurasian
plates with moment magnitudes Mw=9.1 and
Mw=8.6, respectively. Complete data (mb≥4.2)
of the post-1993 time interval have been used
to apply Poisson Hidden Markov models
(PHMMs) for identifying temporal patterns in
the time series of the two earthquake
sequences. Each time series consists of earth-
quake counts, in given and constant time
units, in the regions determined by the after-
shock zones of the two mainshocks. In PHMMs
each count is generated by one of m different
Poisson processes that are called states. The
series of states is unobserved and is in fact a
Markov chain. The model incorporates a vary-
ing seismicity rate, it assigns a different rate
to each state and it detects the changes on the
rate over time. In PHMMs unobserved factors,
related to the local properties of the region are
considered affecting the earthquake occur-
rence rate. Estimation and interpretation of
the unobserved sequence of states that under-
lie the data contribute to better understanding
of the geophysical processes that take place in
the region. We applied PHMMs to the time
series of the two mainshocks and we estimat-
ed the unobserved sequences of states that
underlie the data. The results obtained showed
that the region of the 26 December 2004 earth-
quake was in state of low seismicity during
almost the entire observation period. On the
contrary, in the region of the 28 March 2005
earthquake the seismic activity is attributed to
triggered seismicity, due to stress transfer
from the region of the 2004 mainshock.

Introduction

A common approach when working with
seismicity data is to count the number of

events in a given time period, e.g. one month,
and then to examine the resulting series. The
Poisson distribution is widely used as a proba-
bility model for such kind of data. One of the
most known properties of the Poisson distribu-
tion is that the mean of the counts equals the
variance. This can be used as a diagnostic for
the appropriateness of the Poisson distribu-
tion. In some cases though the mean is greater
than the variance and the data are overdis-
persed. The literature contains several com-
petitors for this case. It is known that Poisson
mixture models (PMMs) is an important can-
didate for modeling overdispersed heteroge-
neous data.1,2 However, data collected from the
same area in successive time intervals tend to
be dependent and, therefore, appropriate mod-
els for statistical modeling must accommodate
this time-dependent structure. A class of mod-
els that allow for temporal dependence
between the data in addition to overdispersion
is Poisson Hidden Markov models (PHMMs).
PHMMs are extensions of the well-known
PMMs and they decay to PMMs in the case of
independent observations. 

In PHMMs each observation is generated by
one of m Poisson distributions that are called
states. The states are unobserved (hidden),
hence the name PHMMs. Each state corre-
sponds to a different rate, while the series of
states is in fact a Markov chain. Through the
transition probability matrix of the Markov
chain, the state that generates the next obser-
vation depends on the state that generated the
current observation. PHMMs allow us to esti-
mate the unobserved sequence of states that
underlie the observation sequence. In this way
we may reveal unknown properties of the mech-
anism that generated the data and classify the
observations with precision and objectivity. 

PHMMs do not assume a constant rate for a
long period of time. They incorporate a varying
seismicity rate, which is more realistic than
long-term constant rate. In fact, when long-
term constant rate is assumed, short-term
variations in seismicity are disregarded.
However, short-term variations in seismicity
are important in the evaluation of the seismic
activity in a region. PHMMs assume a particu-
lar rate for each state. By estimating the state
sequence observations are classified according
to the rate that corresponds to them and
changes to seismicity rate can be detected. 

In recent years, applications of HMMs to
geophysical and seismological data have
gained increasing interest. Granat and
Donnellan3 applied HMMs to GPS and seismic-
ity data from the southern California region in
order to distinguish different classes of
observed seismic events. Temporal dependen-
cies present in earthquake sequences cannot
be accurately modeled by single distributions
or finite mixture distributions. Li and
Anderson-Sprecher4 used HMMs to model of

waiting times in the 1985 Yellowstone earth-
quake swarm. They assumed exponential dis-
tribution associated with each state and
showed that in the case of the 1985
Yellowstone swarm, the HMMs improved the
modeling of the waiting time distribution com-
pared to single distributions (Exponential,
Weibull and Log-normal) or finite mixture dis-
tributions (Exponential - mixture) that are tra-
ditionally used to model earthquake waiting
times. Ebel et al.5 applied an HMM using not
only the intervened times between earth-
quakes but also the spatial quadrant in which
they occur. The time-dependent interaction of
seismic events that is extracted by the transi-
tion probability matrix of HMMs identifies
relationships between earthquakes due to
stress changes within a fault system. The out-
line of this methodology was used by
Chambers et al.6 to produce 1, 2 and 10 days
forecasts in the southern California and west-
ern Nevada regions. Orfanogiannaki et al.7

used HMMs as a tool to identify through the
estimated sequence of hidden states the seis-
mic cycle of strong earthquakes in the area of
Killini, Western Greece. It was an application
of HMMs to model the number of earthquakes
occurring in daily and monthly time intervals.
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Recently, Votsi et al.8 applied HMMs to groups
of earthquake magnitudes and estimated the
sequence of hidden states, where each state
corresponds to different stress field levels. In
this approach we follow the methodology intro-
duced by Orfanogiannaki et al.7 and examine
the seismicity in two adjacent areas of
Sumatra where two large earthquakes occur in
2004 and 2005. The objective of this paper is to
reveal the characteristics of the regions exam-
ined and the geophysical processes that led to
the occurrence of the two mainshocks.

Data 

The data sources are the USGS and ISC
earthquake catalogues for the region denoted
by the rectangle E with coordinates �1.00N -
15.00N and 91.00E - 100.00E (Figure 1). At
first, the entire region E, is divided into two
sub-regions, N (north) and S (south), based
on the rupture zones of the two big earth-
quakes of 26.12.04 and 28.03.05, respectively.9

The solid line in the map of Figure 1, shows
the boundary between these two regions, while
the red and blue stars correspond to the epi-
centers of the 2004 and 2005 mainshocks,
respectively. According to geophysical evidence
the rupture in the sub-region N was not uni-
form.10 The rupture started at the south part of
the region and then propagated further to the
north. Based on the progress of the rupture we
divided sub-region N into two smaller regions
N1 and N2. Data completeness analysis based
on the magnitude-frequency relationship
showed that the data in all regions are com-
plete for mb≥4.2 for the time interval from
1994 onwards. This common completeness
magnitude is adopted for all sub-regions and
only events with magnitude above this cut-off
are used in the analysis that follows. The time
distribution of earthquake magnitudes is plot-
ted versus time in Figure 2. All data sets are
actually discrete valued time series, since they
count the number of events in twenty-three
daytime periods. The time interval between
the two big earthquakes of 26.12.04 and
28.03.05 is 92 days. The entire time interval
can be divided into 4 equal time intervals of 23
days in such a way that the two mainshocks do
not fall in the middle of any time interval but
only at the edges. We are interested to exam-
ine if there are any patterns before the two
mainshocks and in the time interval between
them.

Hidden Markov models: 
definition and notation

HMMs are stochastic processes that consist

of two parts. The first part is an unobserved
(hidden) finite state Markov chain {Ci : iŒN}R
with m states. The second part is a sequence of
random variables {Yi : iŒN} that, conditionally
on Ci, are mutually independent. Each state is
associated with a probability distribution func-
tion f from the same parametric family. When
the state of the model at time i (Ci), is known
and equal to ci, Yi takes the value yi with prob-
ability f(yi | ci). f may be either continuous or
discrete. In the discrete case f may be selected
among a variety of different distribution fami-
lies like Poisson, Negative Binomial etc. We
focus on discrete valued hidden Markov mod-
els and we assume that each observation is
generated from a Poisson distribution, and
thus we derive Poisson hidden Markov models
(PHMMs). In PHMMs f takes the form:

(1)

where λj ≥ 0, j = 1,…,m is the parameter of
the Poisson distribution that corresponds to
state j and yi = 0, 1,…, for all i = 1,…, n is the
observation that corresponds to the i-th point
in time. In our case the sequence of random
variables {Yi: iŒN} is restricted to take only
nonnegative integer values. The transition
among the different states is determined by
the transition probabilities of the transition
probability matrix of the Markov chain:

(2)

Article

Figure 1. Map of the area. N1, N2, and S are the two major regions examined (see details
in the text). Stars represent earthquake epicentres.
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The transition probabilities γlj are defined
as: γlj = P (Ci = j | Ci-1 = l) where l, j = 1,…,m.
This is the probability that given the hidden
process was in state l at the previous time
point, it will be in state j at the current. The
parameters of the model are the transition
probabilities of the Markov chain and the
parameters of the Poisson distributions that
are associated with the states. If we denote
with Ψ the vector of model parameters to be
estimated then the likelihood of an HMM is:

(3)

where n is the length of the observation
sequence used for the model parameter esti-
mation. For the likelihood of a HMM to be cal-
culated, the backward, βj(i), and forward,
αj(i), probabilities were introduced by Baum
et al.:11 βj(i) = P(yi+1,…,yn | Ci = j) and αj(i) =
P(y1,…,yi , Ci = j). The likelihood can then be
calculated in terms of the forward probabili-
ties as: 

(4)

For a very thorough review of the theory of
HMMs one may refer to Ephraim and Merhav.12

Estimation of the unknown
parameters

Due to the underlying structure of HMMs
that allow for a missing data representation of
the model Estimation Maximization algorithm,
known as EM algorithm,13 is adopted for
Maximum Likelihood estimation of the param-
eters of interest. The EM-algorithm consists of
two steps: the expectation step (E-step) and
the maximization step (M-step). At the E-step,
the conditional expectations of the missing
data are computed. The algorithm augments
the observed data to a set of complete data
using the values obtained from the E-step. The
complete data log-likelihood is maximized
with respect to the model parameters at the M-
step of the algorithm. In a HMM the hidden
states and the transitions from one state to
another are treated as missing data in the EM
algorithm. We define the indicator random
variables Uj(i) and Vjk(i) respectively. The ran-
dom variable Uj(i) is equal to 1 if the state of
the model at time i is j and 0 otherwise, i.e.
Uj(i) = 1, if Ci = j and 0 otherwise. The random
variable Vjk(i) is equal to 1 if a transit from
state j to state k occurs at i and 0 otherwise, i.e.
Vjk(i) = 1, if Ci-1 = j and Ci = k and 0 otherwise.
If we denote with Ψ the parameter vector to be
estimated, then the complete data log-likeli-
hood in term of the indicator variables is: 

(5)

At the E-step of the EM algorithm we esti-
mate U and V through their conditional expec-
tations: 

(6)

and 

(7)

ûj(i) is the probability that the state of the
process at time i is j, given the observation
sequence. ûj(i), for i = 1,…,n and j = 1,…,m
are also called state probabilities, and they are
used in the estimation of the unobserved
sequence of states that underlie the data. v ̂ jk(i)
expresses the probability that given the hidden
process is in state j today, it will be in state k
tomorrow. 

At the M-step of the EM algorithm we maxi-
mize the complete data log-likelihood and
obtain parameter estimates in terms of ûj(i)
and v ̂jk(i). Closed form equations are available
for the parameter estimates.14 The sequence of
hidden states that underlie the data is

Article

Figure 3. Estimated states, C, that underlie the data against time
(in 23-day periods) for the entire region (E) examined. The zero
point of time is 01.01.1994. The dates on the horizontal axis rep-
resent the beginning of the 23-day interval.

Figure 2. Time-magnitude plot for events occurring in the entire
region examined from 01.01.1973 to 14.03.2006. The cut-off
magnitude for completeness has been selected equal to mb=4.2
for the post-1993 time interval.
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obtained by maximizing the joint probability
distribution of the hidden states given the
observation sequence, also known as the
Viterbi algorithm15 (see also Forney16).

Analysis

We applied PHMMs to regions E, S, N, N1
and N2 for different number of hidden states.
The optimum number of states for each region
is selected based on the Akaike information
criterion (AIC).17 Consider the AIC criterion
defined as: AIC(m) = -2L(m) + 2m2, where
L(m) is the maximized log-likelihood for a
model with m states. For each region we
choose the number of states m to be the num-
ber that minimizes AIC(m).

In region E, the model with 4 states was
selected as the best model to describe the data.
The application of PHMM in the complete data
set for the entire region E showed (Figure 3)
that the state of seismicity ranges only from
state 1 to 2 in the interval 1994-2002 that is the
seismicity was relatively low. From 2002
onwards a transition to higher states of seis-
micity is observed; that is in states 3 and 4,
with rates 9.61 and 28.20 (events/23days),
respectively (Figure 3). To focus on the period
of the increased seismicity, we narrow the
time window examined. Seismicity state was
investigated for the time interval 01.01.2000-
25.12.2004 inclusive for sub-regions N, N1 and
N2 as well as for the time interval 1.1.2000-
27.3.2005 inclusive for sub-region S. In sub-
regions S, N and N2 the model with 3 compo-
nents was selected while sub-region N1 has

one state less. The parameter estimates of
PHMMs for all 4 sub-regions are summarized
in Table 1. 

The two sub-regions N and S that corre-
spond to the rupture zones of the 26.12.04 and
28.03.05 respectively, are both characterized by
intense seismic activity in the time period
examined. In sub-region N, 7 earthquakes with
magnitudes mb≥5.9 occurred within almost 5
years while in sub- region S the number of
earthquakes of the same magnitude class for
the same time period is 6. The time distribu-
tion of magnitudes for the two sub-regions are
illustrated in Figures 4A and 5A. We observe
that strong events are distributed uniformly
across time in both sub-regions. The number
of earthquakes counted in 23-day periods is
plotted versus time for the two sub-regions in
Figures 4B and 5B. The mean seismicity rate
for sub-region N is 3.14 events/23-day periods
while for sub-region S is 2.78. That is almost 3
earthquakes of magnitude mb≥4.2 occurred in
both sub-regions every 23 days. 

The sub-region N was further divided into
sub-regions N1 and N2 and PHMMs were
applied to all 4 sub-regions in order to reveal
the pattern of hidden states that underlie the
data. In Figure 6 appears the estimated
sequence of hidden states for all 4 sub-regions.
The sequence of states for sub-region N and
sub-region N2 have the same pattern and the
Poisson rates that correspond to the 3 states of
the two sub-regions have similar values (Table
1). The 3 states correspond to periods of low
(~1.4 events/23-day period), medium (~5
events/23-day period) and high (~18.5
events/23-day period) seismic activity. State 3
of high seismicity is attributed to aftershock

activity associated with strong earthquakes.
The seismicity in region N took place in region
N2 and region N1 was always much less active.
In fact, no state of high seismic activity
appears in sub-region N1 for the entire period
examined. State 2 is associated with some
clusters of earthquakes of similar magnitude
concentrated in time. During the observation
sequence sub-region N1 was in state of long-
term failure propagation. Evidence of instabil-
ity comes from the 4 earthquake clusters with
mb ranging from 4.7 to 5.9 that occurred in N1.
However, it appears that the system had not
reached the maturity stage that would result to
rupture. 

One of the most interesting aspects of these
data sets is how the seismic activity in sub-
region S seams to be affected by the seismic
activity in sub-region N. In particular, both
areas experienced moderately strong earth-
quakes in 2002 (N area first followed almost 2
months later by area S). A similar pattern
repeated at the end of 2004 and in early 2005
and PHMMs pick up these seismicity increases
as jumps to higher states. In particular at the
end of 2004 the state of seismicity in sub-
region S changes from 1 to 2 and 3 immediate-
ly after this change is observed in sub-region
N. When sub-region N transits to state 3 for the
second time sub-region S transits again to
state 3 immediately after the occurrence of the
26.12.2004 mainshock. However this time sub-
region S does not jump back to state 2 like
before but it remains to state 3 for 3 subse-
quent time intervals until the occurrence of
the 28.3.05 mainshock. The change of the sys-
tem from a state of medium seismicity to a
state of increased seismicity is not associated

Article

Figure 5. Time distribution of: A) magnitudes; and B) the event
counts (in 23-day periods) for sub-region S. The dates on the hor-
izontal axis represent the beginning of the 23-day interval.

Figure 4. Time distribution of: A) magnitudes; and B) the event
counts (in 23-day periods) for sub-region N. The dates on the
horizontal axis represent the beginning of the 23-day interval.
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with the occurrence of another strong earth-
quake in the sub-region S or neighboring
areas. Sub-region S represents rather a trig-
gered seismicity, due to stress increase from
sub-region N to sub-region S.18

Discussion and Conclusions

PHMMs can provide a diagnostic tool for
identifying changes in seismicity states. The
model incorporates a varying seismicity rate; it
detects the changes of the rate over time and
corresponds a particular rate to each one state.
The transition probabilities of the Markov
chain determine the transitions among the dif-
ferent states. Estimation of the sequence of
unobserved states that underlie the data is
attained with relative ease. The entire region
was divided in sub-regions based in the
progress of the rupture of the 2004 earthquake
and the rupture zone of the 2005 earthquake.
PHMMs were applied to all four sub-regions
and the sequence of hidden states was esti-
mated. The estimated sequence of states
revealed that the regions of the two Sumatra
mainshocks have different seismotectonic
characteristics that need further more detailed
analysis to be revealed. The analysis showed
that we shouldn’t consider the North region
uniformly and revealed exclusive characteris-
tics of the sub-regions. The rupture of the 2004
earthquake was not uniform it started from the
South (sub-region N1) and propagated further

Article

Table 1. Model parameter estimates.

Segment Number of components Component number i Parameters estimates
Poisson rates λi Transition matrix Probability 

E 4 1 4.85

2 8.86

3 9.61

4 28.20

S 3 1 1.78

2 4.13

3 13.15

N 3 1 1.46

2 5.21

3 19.42

N1 2 1 1.38

2 5.17

N2 3 1 1.29

2 4.15

3 18.15

Figure 6. Estimated states, C, that underlie the data against time (in 23-day periods): A)
sub-region N; B) sub-region S; C) sub-region N2; and D) sub-region N1. The zero point
of time is 01.01.2000 for all the sub-regions examined. The dates on the horizontal axis
represent the beginning of the 23-day interval.
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North (sub-region N2). Sub-region N2 is char-
acterized by increased seismic activity that
dominates the entire region. On the contrary,
the sub-region N1 was in state of low seismic-
ity during almost the entire observation peri-
od. It appears that the system was in state of
long-term failure propagation during the
observation period and had not reach the
maturity stage that would result to rupture.
The seismic activity in sub-region S is affected
by the seismic activity in sub-region N. Both
areas experienced moderately strong earth-
quakes in 2002 and at the end of 2004 and in
early 2005. Sub-region N was activated first,
followed by sub-region S. PHMMs pick up these
seismicity increases as jumps to higher states.
This may imply a triggered seismicity, due to
stress transfer from the region of the 2004
mainshock to the region of the 2005 main-
shock and a resulting acceleration of the stress
loading that prepared the 2005 rupture.
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