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Abstract

The Every Earthquake a Precursor
According to Scale (EEPAS) long-range earth-
quake forecasting model has been shown to be
informative in several seismically active
regions, including New Zealand, California
and Japan. In previous applications of the
model, the tectonic setting of earthquakes has
been ignored. Here we distinguish crustal,
plate interface, and slab earthquakes and apply
the model to earthquakes with magnitude M≥4
in the Japan region from 1926 onwards. The
target magnitude range is M≥ 6; the fitting
period is 1966-1995; and the testing period is
1996-2005. In forecasting major slab earth-
quakes, it is optimal to use only slab and inter-
face events as precursors. In forecasting major
interface events, it is optimal to use only inter-
face events as precursors. In forecasting major
crustal events, it is optimal to use only crustal
events as precursors. For the smoothed-seis-
micity component of the EEPAS model, it is
optimal to use slab and interface events for
earthquakes in the slab, interface events only
for earthquakes on the interface, and crustal
and interface events for crustal earthquakes.
The optimal model parameters indicate that
the precursor areas for slab earthquakes are
relatively small compared to those for earth-
quakes in other tectonic categories, and that
the precursor times and precursory earth-
quake magnitudes for crustal earthquakes are
relatively large. The optimal models fit the
learning data sets better than the raw EEPAS
model, with an average information gain per
earthquake of about 0.4. The average informa-
tion gain is similar in the testing period,
although it is higher for crustal earthquakes
and lower for slab and interface earthquakes
than in the learning period. These results
show that earthquake interactions are
stronger between earthquakes of similar tec-
tonic types and that distinguishing tectonic
types improves forecasts by enhancing the
depth resolution where tectonic categories of
earthquakes are vertically separated. However,

when depth resolution is ignored, the model
formed by aggregating the optimal forecasts
for each tectonic category performs no better
than the raw EEPAS model. 

Introduction

The Every Earthquake a Precursor According
to Scale (EEPAS) model is showing promise as
a long-range earthquake forecasting method. It
was originally fitted to the New Zealand earth-
quake catalogue to optimize its performance in
forecasting earthquakes of magnitude
M>5.75.1 With unchanged parameters, it was
shown to outperform a spatially varying
smoothed seismicity model based on proximity
to the locations of past earthquakes (PPE) in
California for magnitude M>5.751 and in Japan
for M>6.75.2 It was applied at lower magnitudes
(M >4.75 and M >4.95, respectively) to high-
quality catalogues of the Kanto region, central
Japan, and southern California,3,4 and at
M>5.95 in Greece,5 all with similarly successful
results. Some elaborations of the model to take
account of aftershocks have been proposed.6,7

Versions of the model are being tested in the
Collaboratory for the Study of Earthquake
Predictability (CSEP) experiments in
California,4 New Zealand8 and Japan.9,10 Useful
background information on the CSEP experi-
ments and testing methods is given by Jordan,11

Zechar et al.,12,13 and Schorlemmer et al.14,15 The
EEPAS model has been shown to fit well to a
physics-based synthetic earthquake catalogue
involving a dense fault network.16

The EEPAS model, as applied in previous
studies, treats all earthquakes the same,
regardless of their tectonic setting. It does not
discriminate between three distinct tectonic
categories of earthquakes: those occurring
within the continental crust, those on plate
boundaries, and those within subducted slabs.
In regions such as Japan and New Zealand,
earthquakes in two or more of these categories
occur in close proximity because of the sub-
duction processes that are an important fea-
ture of the seismotectonics of these regions.
This proximity causes earthquakes from dif-
ferent tectonic categories to interact with each
other in the forecast process. However, earth-
quakes within a given tectonic category are
expected to interact more strongly than earth-
quakes from different tectonic categories,
because the background stress is generally dis-
continuous across a material interface.17

Notwithstanding this expectation, there is
anecdotal evidence of apparent short-term
interactions between large earthquakes across
earthquake categories. Examples include the
1942 earthquakes in Wairarapa, New Zealand,
in which a large earthquake in the crust was fol-
lowed by one in the slab within a few months,18

and the 1990 earthquakes in Weber, New
Zealand, in which a large earthquake in the slab
was followed by one on the plate interface with-
in a few months.19 There may also be longer
term interactions. Shimazaki20 suggested that
large interplate earthquakes on subduction
zones along the Pacific coast in Japan are pre-
ceded (over a period of decades) by an increase
in the level of activity of large intraplate earth-
quakes within the crust of the overriding plates,
due to the high intraplate stress caused by the
loading of the plate interface.

How the long-term seismogenic process is
affected by tectonic setting should be revealed
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by different optimal EEPAS parameters for
earthquakes in different tectonic categories
and different interactions between earth-
quakes within a given tectonic category than
between earthquakes in different categories.
Therefore, in this study we examine the
hypothesis that the long-term seismogenic
process for a major earthquake is affected by
its tectonic setting, and that consequently the
EEPAS model can be improved by taking
account of the tectonic category to which pre-
cursory earthquakes belong. Accordingly, we
separate earthquakes into the three tectonic
categories and develop the EEPAS parameters
for different restrictions, by tectonic category,
of precursor and target earthquakes. 

Classification of earthquakes
by tectonic type

The main catalogue of Japan used in this
study is that provided by the SEIS-PC earth-
quake analysis package21 for the period 1926-
2005. This catalogue was the more complete of
the two detailed catalogues of Japan that were
available. The recently revised Japan
Meteorological Agency catalogue was not avail-
able to us for this study. The well-known and
readily available model of the plate boundaries
by Gudmundsson and Sambridge22 is used to
define the plate interfaces in Japan. We vali-
dated this model against the locations of
events having known accurate depths and
earthquake categories, and also against the
larger set of events based on the International
Seismological Centre (ISC) catalogue having
accurate focal depths.23 We were able to deter-
mine a depth range centred on the slab inter-
face where events are most likely to be actual
interface events. Since the latter catalogue is
by no means complete, we then calibrated the
SEIS-PC catalogue against the ISC catalogue
by determining an average shift in depth
between the two. This way, we eliminated sys-
tematic differences in hypocenter depth
between the SEIS-PC catalogue and the slab
model, and were able to produce a complete
catalogue that has event type assigned.

The whole earthquake catalogue is shown in
a map view in Figure 1, which distinguishes
the three different tectonic categories. Maps of
the individual earthquake categories are
shown in Figure 2A-C, with depth indicated by
color coding. A longitude-depth cross section
across Tohoku is shown in Figure 3 for earth-
quakes within a one-degree latitude band
around 39°N, again distinguishing earth-
quakes in the three tectonic categories.

For a large majority of the events, i.e. the
smaller ones, this assignment is statistical in
the sense that it is based on the estimate of
focal depth alone, without knowing the actual

event type. The assignment is based on the dis-
tance of the hypocenter from the plane defining
the plate boundary. Events within 5 km of the
plate boundary are assumed to be interface
events. Events more than 5 km above or below
it are assumed to be crustal or slab events,
respectively. One could in principle experiment
with different threshold values. However, this
is not done here because of the high computa-
tional burden of such experimentation. It is
inevitable that some earthquakes are misclas-
sified because of uncertainties in the plate
boundary model and earthquake locations.
However, the tectonic types are regarded as
fixed for the purposes of the analyses carried
out here. This is reasonable, because the sta-
tistical models of seismicity fitted here do not
depend upon a perfect classification.

Overview of models

The EEPAS model is based on the Precursory
Scale Increase (Ψ) phenomenon24-29 of an
increase in the rate and magnitude of minor
earthquakes, which has been found to precede
most major shallow earthquakes in the long
term in several well-catalogued regions of the
world. The precursory swarm phenomenon30-36

is a special case of the Ψ-phenomenon.
Associated with the Ψ-phenomenon are pre-

dictive scaling relations: regressions of main-
shock-magnitude, precursor-time, and precur-
sory area on the precursory magnitude level
(Figure 4). These relations allow the magni-
tude, time of occurrence and source area of a
major earthquake to be predicted from the pre-
cursory magnitude level. The EEPAS model
treats each earthquake as a possible long-term
precursor and uses the predictive scaling rela-
tions, together with the earthquake’s magni-
tude, to estimate the distribution in time, mag-
nitude and location of the earthquake’s contri-
bution to the future earthquake occurrence
rate density.1

The parameters of the EEPAS model are
linked to the predictive scaling relations: aM, bM

and σM to the intercept, slope and standard
deviation, respectively, of the regression of
mainshock magnitude on precursor magni-
tude; aT, bT and σT to the intercept, slope and
standard deviation, respectively, of the regres-
sion of the logarithm of precursor time on pre-
cursor magnitude; and bA and σA to the slope
and intercept, respectively, of the regression of
the logarithm of precursor area on precursor
magnitude.

The EEPAS model is a mixture of a time-
varying component based on the Ψ- phenome-
non, as described above, and the Proximity to
Past earthquakes (PPE) models were given by
smoothed seismicity model). The failure rate

Article

Figure 1. Earthquakes in the Japan catalogue, 1926-2005, showing different event types.
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parameter m (0 ≤m ≤1) controls the propor-
tional contributions of the PPE component to
the mixture. It represents the proportion of tar-
geted earthquakes that do not display the Ψ-
phenomenon. If m=0, there is no contribution
from the PPE model, and if m=1, there is no
contribution from the time-varying compo-
nent. The PPE model is based on the notion
that large earthquakes occur close to where
they have occurred in the past, and is also a
useful reference model against which to meas-
ure the performance of the EEPAS model. 

Another important reference model in the
analyses presented here is the Stationary
Uniform Poisson (SUP) model, in which the
magnitude distribution conforms to the
Gutenberg-Richter frequency-magnitude rela-
tion, but the rate of earthquake occurrence is

both temporally and spatially invariant. The
SUP model is useful as a model of least informa-
tion, and is used as a baseline for information
scores defined below. The PPE model is a more
elaborate form of Poisson model in which the
magnitude distribution conforms to the
Gutenberg-Richter frequency-magnitude rela-
tion and the rate of earthquake occurrence is in
principle time-invariant (although continually
updated as new earthquakes occur) but spatial-
ly varying. On the other hand, in the EEPAS
model, the rate of earthquake occurrence is
both temporally and spatially varying, and in
small space-time volumes does not necessarily
conform to the Gutenberg-Richter relation. 

Technical details of the SUP, PPE and EEPAS
models were by Rhoades and Evison.1-3

Fitting and testing

Fitting is carried out by maximum likelihood,
and quantification of improvements is assessed
using the likelihood method, which is widely
used for comparison of probabilistic forecasting
models and has been adopted by the CSEP
earthquake forecast testing centers.14,37-40

Comparison of alternative models is rigor-

ously achieved by splitting the catalogue into
two sets: a learning set and a testing set. The
model selection and fitting is carried out on the
learning set, and the performance assessment
and significance testing on the testing set. In
order to avoid the well-known problems associ-
ated with over-fitting,41 a goodness of fit statis-
tic which includes a penalty for fitting extra free
parameters is used. At the testing stage, the
number of fitted parameters is irrelevant
because there are no free parameters. By com-
paring goodness of fit or performance statistics
of the PPE and SUP models, we can measure the
information value of spatial variation of earth-
quake occurrence under the PPE model, and by
comparing similar statistics of the EEPAS and
PPE models, we can measure the information
value of time-variation of earthquake occur-
rence under the EEPAS model. If over-fitting is
successfully avoided, the information value of
models tends to be similar whether assessed at
the fitting stage or the testing stage.

The goodness of fit is assessed using the
Akaike Information Criterion (AIC) statistic,42

defined for a particular model M as 

AICM = -2lnLM + 2pM (1)

where LM is the optimized log likelihood of the

Article

Figure 2. Location, magnitude and depth
of (A) crustal earthquakes, (B) interface
earthquakes, and (C) slab earthquakes in
the Japan catalogue, 1926-2005.

Figure 3. (A) Location of cross-section of earthquakes, selected by latitude range, through
Tohoku, Japan, 1926-2005. (B) Longitude-depth cross-section of selected earthquakes,
showing tectonic type of each event.
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model, and pM is the number of fitted parame-
ters. A relatively low value of AIC indicates a
relatively high information value, i.e. a model
that explains the data relatively well. Formally,
the information value of a fitted model is
expressed as the information rate per earth-
quake, IM, defined by

IM = (AICSUP – AICM) / (2N)   (2)

where N is the number of earthquakes in the
target set. 

The fitting period is 1965 January 1 to 1995
December 31. This is the period over which the
models are optimized, although the earth-
quakes from 1926 onwards are used in the
analysis, with those before 1965 serving to
warm up the models. Only earthquakes with
hypocentral depth h ≤ 120 km are used,
because the precursory scale increase is held to
be a phenomenon mainly associated with shal-
low earthquakes.26 The targeted earthquakes
are those inside the polygonal region of surveil-
lance shown in Figure 5A. The region of sur-
veillance was chosen to be as large as possible
in order to obtain the maximum possible num-
ber of earthquakes in each tectonic subset,
subject to adequate catalogue completeness for
precursory earthquakes. The crustal, interface
and shallow slab earthquakes occupy smaller
regions, as shown in Figure 5B-D. The magni-
tude threshold m0 for earthquakes contributing
to the analysis is 3.95 and the magnitude
threshold mc for targeted earthquakes is 5.95. 

Fitting without regard
to tectonic type

Initially the SUP, PPE and EEPAS models
were fitted to earthquakes in the Japan cata-
logue without regard to tectonic type. The fit
was also examined in the case that only earth-
quakes with h ≤ 45 km are used. Note that all
earthquakes with h 45 km are classified as in
the slab. The information rate is not usually
improved greatly by fitting many parameters.
Here we fit only four parameters of the EEPAS
model (aM, aT, σA and m), with other parameters
being fixed at typical values from previous stud-
ies. The equal-weights version of the EEPAS
model1 is used. Here, and in all fits to subsets
below, the fitted parameters are optimized sub-
ject to constraints. The parameters aM, aT, σA

and m are constrained to lie in the intervals 1.0-
1.8, 0.9-2.5, 0.5-10.0 and 0.0-0.5, respectively. 

The optimal value of 0.5 for m (Table 1) indi-
cates that the fitted EEPAS model is a 50:50 mix-
ture of the time-varying component and the PPE
smoothed-seismicity component. This is a high
value of m compared to estimates in previous
studies,1-3 which are typically much closer to 0. 

It can be seen from Table 1 that the fitted
parameter values are similar for the two cases
h ≤ 120 km and h ≤ 45 km. Also the informa-
tion rates are similar, indicating that the
EEPAS model forecasts the deeper earthquakes
in the range 45 <h ≤120 km about as well as it
does the shallower earthquakes.

The difference DI between IEEPAS and IPPE, here
referred to as the information gain, is an indica-
tor of the quantity of time-varying information
provided by the EEPAS model. From Table 1, the
difference is 0.16 for h 120 km and 0.13 for h 45
km. These values correspond to an average prob-
ability gain per earthquake of 1.15 and 1.19,
respectively. The observed information gains are
similar to the value of 0.13 obtained by Rhoades
and Evison2 in fitting the same models (but with
m=0) to a larger region of surveillance using the
Japan Meteorological Agency (JMA) catalogue
with mc=6.25. They are, however, much lower
than the information gains obtained from stud-
ies of the EEPAS model in California, which
range from 0.72 for the whole of California1 with
mc=5.75 to 0.82 for Southern California4 with
mc=4.95. The high information gain of the
EEPAS model in California has been ascribed to

the simplicity of the plate boundary tectonics in
California with most of the seismicity being
shallower than 15 km.3

Fitting to earthquakes
in separate tectonic classes

Next we describe the fitting of models with
the target set of earthquakes restricted to indi-
vidual tectonic-type subsets. We consider dif-
ferent predictor sets in order to determine
whether the precursors of major earthquakes
in a particular tectonic class come from the
same class or different classes of earthquakes. 

Slab earthquakes

There are 42 slab earthquakes in the target
set, including 29 with h ≤ 45 km. The pre-
dictability of the shallow slab events with h ≤ 45
km is of interest in its own right. Therefore, we

Article

Figure 4. Predictive scaling relations of long-term seismogenesis derived from examples of
the precursory scale increase phenomenon in four well-catalogued regions. (A)
Mainshock magnitude Mm versus precursor magnitude MP; (B) precursor time TP versus
MP; (C) precursor area AP versus MP. Solid lines are fitted regressions and dotted lines are
95% tolerance limits.26
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consider the predictability both of all slab earth-
quakes within the region of surveillance shown
in Figure 5A, and the shallow events only with-
in the smaller region shown in Figure 5D. 

Table 2 shows the result of fitting the model
to all slab events using different predictor sets
of earthquakes (slab, crust and slab, interface
and slab, and all earthquakes). Note that the
largest values of IEEPAS, IPPE and DI are all
obtained when both interface and slab events
are included in the predictor set. Since the PPE
model embodies the hypothesis that large
earthquakes tend to occur near to where they
have occurred before, the result for IPPE sug-
gests that large earthquakes in the slab tend to
occur near to where large earthquakes have
previously occurred either in the slab or on the
interface. The results for IEEPAS and DI together
imply that the earthquakes precursory to large
earthquakes in the slab may occur either in
the slab or on the interface, but hardly ever in
the crust. This analysis does not show whether
or not it is only relatively shallow slab earth-
quakes close to the interface that have precur-
sors on the interface.

Note that the values of IEEPAS, IPPE and DI in
Table 2 are all higher than those in Table 1. It
follows that earthquakes in the slab as a sepa-
rate class are on average more predictable
than earthquakes in general in the target
region, using any of the predictor sets in Table
2. The optimum value of 0.59 for DI indicates
that the information gain for slab earthquakes
is much greater than that for earthquakes in
general in Table 1, and not much less than that
found in the studies of California.

Comparing the fitted parameter values for
the optimal model in Table 2 with those in
Table 1, we note that the values of aM and σA

are rather similar. The value of aT (1.15) for
slab earthquakes is less than that in Table 1
(1.43). If all other parameter values were
equal, this difference would indicate that
earthquakes in the slab have a precursor time
which is shorter on average by a factor of 0.52
than earthquakes in general in the target
region. Also, we note that the parameter m of
the optimal model, at 0.34, is less than that in
Table 1. A lower value of m indicates that a
higher proportion of the target earthquakes
have precursory sequences conforming well to
the fitted EEPAS model parameters. Again, this
analysis does not show whether or not it is the
relatively shallow slab earthquakes close to the
interface that conform best to the fitted EEPAS
model parameters. 

It is instructive to compare the parameter
values obtained with slab earthquakes only in
the predictor set with those of the optimal
model when slab and interface events are both
included. The high value of 1.7 for the param-
eter aM indicates that the precursory earth-
quakes occurring in the slab have relatively

Article

Figure 5. (A) Region of surveillance for fitting EEPAS model (dashed polygon). (B) Sub-
region occupied by crustal earthquakes. (C) Sub-region occupied by interface earth-
quakes. (D) Sub-region occupied by shallow (h <45 km) slab earthquakes.

Table 1. Parameters and information scores for EEPAS model fitted to Japan catalogue
within testing region of Figure 5A, without regard to tectonic type.

Depth restriction
h ≤120 km h ≤45 km
(n=105) (n=76)

Parameter Fixed or fitted values

aM 1.47 1.48
bM 1.0* 1.0*

σM 0.32* 0.32*

aT 1.43 1.42
bT 0.4* 0.4*

σT 0.23* 0.23*

bA 1.06 1.07
σA 0.35* 0.35*

m 0.50 0.50
Information score Value

IPPE 1.42 1.44
IEEPAS 1.58 1.57

DI=IEEPAS - IPPE 0.16 0.13
*Fixed parameter value.
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low magnitudes. Because of this high value of
aM, the relatively large values of aT and σA

should not be taken to indicate relatively long
precursor times and large precursory areas,
respectively. The relatively high value of 0.49
for m indicates that a relatively high proportion
of target earthquakes do not have precursory
sequences in the slab conforming to the fitted
EEPAS parameters. 

Table 3 shows the results of fitting the shal-
low slab events only. There are only 13 earth-
quakes in the target set, making the fitting
exercise somewhat suspect. However, the
highest value of IPPE is again obtained when
slab and interface events are included in the
predictor set. In contrast, the highest value of
IEEPAS is obtained with only the slab earth-
quakes in the predictor set. A notable feature
is the relatively low value of 0.18 for m, indicat-
ing that most of the targeted shallow slab
earthquakes have precursory sequences in the
shallow slab conforming to the EEPAS model. 

Interface earthquakes

There are 21 interface earthquakes in the
target set. Table 4 shows the result of fitting
the models to these data for different predictor
sets of earthquakes. 

The highest value of IPPE (1.18) is obtained
when the predictor set consists of the crustal,
interface and shallow (h ≤45 km) slab earth-
quakes. This indicates that large interface
earthquakes tend to occur where large earth-
quakes have previously occurred either in the
crust, on the interface or in the shallow part of
the slab. 

The largest value of IEEPAS (1.26) is obtained
when the predictor set consists of interface
events only. This indicates that the precursory
earthquakes for interface events occur mostly
on the interface itself.

Comparing the fitted parameter values for
the optimal model in Table 4 with those in
Table 1, we note that aM is larger (1.60 com-
pared to 1.47), aT is smaller (1.13 compared to
1.43), σA is much larger (1.71 compared to
1.06), and m is smaller (0.30 compared to 0.5).
The larger value of aM indicates that precurso-
ry earthquakes tend to be relatively small in
magnitude. Taking into account the difference
for aM, the differences for aT and σA indicate
that on average precursor times are relatively
short and precursor areas relatively large for
earthquakes on the interface compared with
those for earthquakes in general. Also, the rel-
atively low value of m indicates that a high pro-
portion of the large earthquakes on the inter-
face have precursory sequences conforming
well to the fitted parameters.

The results in Table 4 suggest that an EEPAS

model with the PPE component derived from
crustal, interface and shallow slab earth-
quakes, and the time-varying component
derived from only the interface might provide a
slightly better fit to the data than any model in
Table 4. However, such a model was found to
reduce the AIC value by only a negligible
amount. Therefore, the model using only inter-
face earthquakes for both components is pre-
ferred on account of its simplicity.

Crustal earthquakes

There are 42 crustal earthquakes in the tar-
get set. Table 5 shows the result of fitting the
models to these data for different predictor
sets of earthquakes. We optimize the same
four EEPAS parameters as in the previous sec-

tion, with other parameters fixed to the same
values listed in Table 1. 

It is clear from Table 5 that there is no bene-
fit to the EEPAS model information score from
including the slab earthquakes, and particularly
the deeper events with 45 <h ≤120 km in the
predictor set. It follows that not many precur-
sors to crustal earthquakes occur in the slab.

Note that the highest values of both IEEPAS and
IPPE in Table 5 are obtained when the crust and
interface earthquakes are used as the predictor
set. However, the highest value of DI is obtained
when only the crustal earthquakes are used.

To investigate further whether a significant
proportion of precursory earthquakes to major
crustal earthquakes occur on the plate inter-
face, we fit an EEPAS model in which the PPE
component is estimated using earthquakes
from both the crust and interface, and the
time-varying component is estimated using

Article

Table 2. Parameters and information scores for EEPAS model fitted to slab earthquakes
in the Japan catalogue (n=42) within region of surveillance in Figure 5A. EEPAS param-
eters not listed are constrained to the same values as in Table 1.

Model Predictor set
component (C: Crust; I: Interface; S: Slab)

PPE S C, S I, S C, I, S
Time-varying S C, S I, S C, I, S
Parameter Fitted value

aM 1.70 1.70 1.52 1.45
aT 1.31 1.25 1.15 1.09
σA 1.10 0.60 0.96 0.94
m 0.49 0.50 0.34 0.36

Information score Value

IPPE 1.67 1.57 1.70 1.58
IEEPAS 2.15 1.86 2.29 2.02
DI* 0.48 0.29 0.59 0.44

*DI=IEEPAS - IPPE

Table 3. Parameters and information scores for EEPAS model fitted to shallow (h ≤45
km) slab earthquakes (n=13) within the region of surveillance shown in Figure 5D.
EEPAS parameters not listed are constrained to the same values as in Table 1.

Model Predictor set
component (C: Crust; I: Interface; S: Slab)

PPE S I, S C, S C, I, S
Time-varying S I, S C, S C, I, S
Parameter Fitted value

aM 1.66 1.62 1.65 1.65
aT 1.20 1.19 1.14 1.14
σA 0.60 0.65 0.55 0.63
m 0.18 0.18 0.33 0.29

Information score Value

IPPE 1.47 1.27 1.55 1.39
IEEPAS 2.52 2.12 2.08 1.88
DI* 1.05 0.84 0.52 0.49

*DI= IEEPAS - IPPE
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only the earthquakes from the crust. As well as
the equal-weighting strategy adopted above,
we also consider the alternative weighting
strategy of down-weighting aftershocks. The
results are summarized in Table 6.

For both variations on the EEPAS model
considered in Table 6, the value of IEEPAS is
greater than the maximum value in Table 5.
The maximum value of IEEPAS is obtained for
the case of down-weighted aftershocks. This
is our preferred model for crustal earth-
quakes, and we infer that the precursory
earthquakes to major crustal earthquakes
occur predominantly in the crust.

Effect of tectonic category on
predictive scaling relations

The fitted parameters of the optimal models
for each tectonic category indicate some differ-
ences in the predictive scaling relations of
long-term seismogenesis depending on the
tectonic category of the target earthquakes.
These differences are illustrated in Figure 6. 

In Figure 6A, the median main shock magni-
tude Mm=aM+bMm for an observed precursory
earthquake of magnitude m is plotted for main
shocks in each tectonic category, based on the
optimal fitted EEPAS model for that category.
The differences between tectonic categories are
up to a third of a magnitude unit, with the medi-
an main shock magnitude for crustal earth-
quakes being lowest. In other words, the precur-
sor earthquakes for a given main shock magni-
tude are, on average, higher for crustal earth-
quakes than for interface and slab earthquakes.

In Figure 6B, the median precursor time is
plotted for each tectonic category based on the
optimal EEPAS parameters. This figure shows
that, for a given precursor magnitude, the pre-
cursor time for crustal earthquakes is, on aver-
age, about double that for slab and interface
events.
In Figure 6C, the 99th percentile of the distri-

bution of precursory area is plotted for each tec-
tonic category, based on the parameters σA and
bA of the optimal EEPAS model for that category.
This figure shows that precursory areas for
earthquakes in the slab are smaller by a factor
of two or three than those for earthquakes in
the slab or interface, respectively. The 99th per-
centile was used here rather than the median to
make Figure 6C as comparable as possible with
Figure 4C, in which the whole precursory area
from examples of the precursory scale increase
is plotted. 

Although the two approaches to deriving the
predictive scaling relations, through the pre-
cursory scale increase phenomenon (Figure 4)
and the EEPAS model parameters (Figure 6)
are not entirely equivalent, the similarities
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Table 4. Parameters and information scores for EEPAS model fitted to interface earth-
quakes (n=21) within the region of surveillance shown in Figure 5C. EEPAS parameters
not listed are constrained to the same values as in Table 1.

Model Predictor set
component (C: crust; I: interface; S: slab)

PPE I C, I I, S I, S C, I, S C, I, S
(h ≤45) (h ≤45)

Time-varying I C, I I, S I, S C, I, S C, I, S
(h ≤45) (h ≤45)

Parameter Fitted values

aM 1.60 1.00 1.60 1.60 1.18 1.00
aT 1.13 1.26 1.00 1.05 0.90 0.90
σA 1.71 1.50 2.92 2.32 2.27 2.12
m 0.30 0.39 0.50 0.50 0.50 0.50

Information Value
score

IPPE 0.91 1.02 0.99 1.06 1.12 1.18
IEEPAS 1.26 1.13 1.03 1.12 1.08 1.16
DI * 0.36 0.11 0.04 0.06 -0.04 -0.02

*DI=IEEPAS - IPPE

Table 5. Parameters and information scores for EEPAS model fitted to crustal earth-
quakes in the Japan catalogue (n=42) within the region of surveillance shown in Figure
5B. EEPAS parameters not listed are constrained to the same values as in Table 1.

Model Predictor set
component (C: crust; I: interface; S: slab)

PPE C C, I C, S C, S C, I, S C, I, S
(h ≤45) (h ≤45)

Time-varying C C, I C, S C, S C, I, S C, I, S
(h ≤45) (h ≤45)

Parameter Fitted values

aM 1.25 1.27 1.18 1.26 1.27 1.27
aT 1.51 1.48 1.46 1.48 1.46 1.46
σA 1.35 1.38 1.17 1.34 1.21 1.21
m 0.50 0.50 0.50 0.44 0.50 0.50

Information Value
score

IPPE 0.89 1.06 0.89 0.88 1.02 0.99
IEEPAS 1.05 1.15 0.97 1.04 1.03 1.08
DI* 0.16 0.09 0.08 0.16 0.01 0.07

*DI=IEEPAS - IPPE

Table 6. Parameters and information scores for EEPAS model fitted to crustal earth-
quakes (n=42) within the region of surveillance shown in Figure 5B. The PPE model is
derived using crustal and interface earthquakes. The time-varying component of EEPAS
is derived from crustal earthquakes only.

Weighting strategy
Equal weights Aftershocks 

down-weighted
Parameter Fitted values

aM 1.27 1.31
aT 1.49 1.45
σA 1.29 1.41
m 0.50 0.50

Information score Value

IPPE 1.06
IEEPAS 1.17 1.23
DI* 0.11 0.17

*DI=IEEPAS - IPPE
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and differences can be noted. First note that all
three relations in Figure 6A are close to the fit-
ted relation between mainshock magnitude
and precursor magnitude in Figure 4A.
Secondly, the slab and interface relations in
Figure 6B are close to, although slightly below,
the fitted relation for precursor time in Figure
4B, but the crustal relation is appreciably
above, although well within the 95% tolerance
limits. Finally, the interface relation in Figure
6C is close to the fitted relation for precursory
area in Figure 4C, but the slab and interface
relations are lower. The slab relation is even
outside the 95% tolerance limits of Figure 4C,
and so represents the most significant depar-
ture from the relations derived from the pre-
cursory scale increase phenomenon. 

Enhancement of information
scores

The overall results of fitting the EEPAS
model are summarized in Table 7, in which the
information scores for the best model for each
targeted subset of earthquakes are shown,
together with those for the fit to all earth-
quakes without regard to tectonic type. Note
that for each targeted subset the information
gain DI is greater than that for all earth-
quakes; for the slab events by a factor of more
than 3 and for the interface events by a factor
of more than 2.

Tests on independent data

For testing on independent data the infor-
mation score IM for a model M is defined as

IM=(lnLM – lnLSUP) / N (3)

where ln L is the log likelihood statistic and N
is the number of target earthquakes in the
testing set. The number of fitted parameters
does not affect the information score for inde-
pendent testing because the parameter values
are all fixed at the testing stage.

Fitted models described in the previous sec-
tion were applied to the testing set of earth-
quakes (1996-2005) and the information
scores were computed. These testing results
are summarized in Table 8, in which the infor-
mation scores for the best model for each tar-
geted subset of earthquakes are shown,
together with those for the model for all earth-
quakes without regard to tectonic type.

The information scores in Table 8 can be
compared to those in Table 7. It is noticeable
that, unlike Table 7, the value of DI in Table 8 is
higher for the crust than for the interface or
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Figure 6. Predictive scaling relations for earthquakes in the slab interface and crust, as indi-
cated by the EEPAS model parameters fitted separately to each tectonic type. (A) Median
mainshock magnitude versus precursor magnitude; (B) median precursor time versus pre-
cursor magnitude; (C) 99th percentile of precursor area versus precursor magnitude.

Table 7. Information scores for best model in each class in fitting to the learning set
(1966-1995).

Target set

All Slab Interface Crust
(n=105) (n=42) (n=21) (n=42)

Information score Value

IPPE 1.42 1.70 2.27 1.06
IEEPAS 1.58 2.29 2.62 1.23
DI* 0.16 0.59 0.35 0.17

Table 8. Information scores for best model in each class evaluated on the testing set of
earthquakes (1996-2005).

Target set

All Slab Interface Crust
(n=37) (n=13) (n=7) (n=17)

Information score Value

IPPE 1.07 1.90 2.42 0.38
IEEPAS 1.29 2.07 2.69 1.05
DI* 0.22 0.17 0.27 0.67
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slab subsets. The high value for the crust is due
to a particularly low value of IPPE rather than a
high value of IEEPAS. Conversely, the relatively low
values of DI for the slab and interface appear to
be due to high values of IPPE rather than to low
values of IEEPAS. In any case, not too much
reliance should be placed on the results for the
individual subsets because of the relatively
small number of target earthquakes in each.
But it is notable that in Table 8, as in Table 7,
the overall information scores of the best mod-
els combined are higher than those for the
model fitted to all data without regard to tecton-
ic type, and by similar amounts: for IPPE by 0.23,
for IEEPAS by 0.43 and for DI by 0.20. 

In Figure 7, the performance of the best fit-
ting model in each class on the testing set is

compared with that of other models of the
same class using other data inputs. The tests
used here are the t-test and w-test.40 Note that
an information gain per earthquake greater
than zero indicates that the model named in
the header of the plot outperforms the model
named in the left side panel.

Figure 7A shows that among models for slab
earthquakes, the performance of the best-fitting
model (EEPAS using interface and slab earth-
quakes as predictors) is significantly better at
about the 95% confidence level (the w-test
being significant and t-test not quite signifi-
cant) than that of the model using all tectonic
categories of earthquake as predictors, but not
significantly different from the other models. It
also shows that the EEPAS model using only the
slab earthquakes as predictors is the best-per-

forming model during the testing period. 
Figure 7B shows that among models to fore-

cast interface earthquakes, the performance of
the best fitting model (EEPAS using only inter-
face earthquakes as predictors) is not signifi-
cantly different from that of other models in the
same class. The lack of any significance differ-
ences between any of the models here is likely
due to there being only seven earthquakes in
the target set during the testing period. 

Figure 7C shows that among models to fore-
cast crustal earthquakes, the performance of
the best fitting model (the EEPAS model with
aftershocks down-weighted using only crustal
earthquakes as predictors for the time-varying
component and crustal and interface events for
the PPE component) is significantly better
with 95% confidence than all other models in
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Figure 7. t-test comparison of the informa-
tion gain per earthquake, during the test
period, of the best-fitting EEPAS model tar-
geting (A) slab earthquakes, (B) interface
earthquakes, (C) crustal earthquakes over
other models. Predictor sets are shown in
brackets. (C: Crust; I: Interface; S: Slab).
Error bars are 95% confidence intervals.
The number of target earthquakes is shown
above the mean information gain and the
w-test significance below (ns, not signifi-
cant; *significant at 95% confidence level).

Figure 8. Illustrating the construction of the aggregate model for shallow earthquakes:
EEPAS model forecast of rate density of shallow (h ≤45 km) earthquake occurrence on the
plate interface for magnitude 7.0 on 2009 06 30, based on catalogue up to end of 2005
within the region of surveillance. (A) Crustal model; (B) Interface model; (C) Slab model;
and (D) Aggregate model.
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the same class. In this case, the results
obtained from the fitting period are strongly
confirmed by the performance of the fitted
models during the testing period. 

Aggregate model

Aggregate EEPAS models were created for
each depth range (0-120 km, and 0-45 km)
from the optimal models for each tectonic cat-
egory. For the 0-120 km depth range, slab
earthquakes can occur anywhere within the
region of surveillance of Figure 5A, crustal
earthquakes within the region of surveillance
of Figure 5B, but interface events only within
the smaller region of Figure 5C. The rate den-
sity of the aggregate model is, therefore,
obtained by summing the rate densities of the
crustal, interface and slab models at locations
within the region of Figure 5C, by summing
those of the crustal and slab models at other
locations within the region of Figure 5B, and
by using the slab rate density only at other
locations. For the 0-45 km depth range, the dif-
ference is that slab earthquakes can occur only
within the region of Figure 5D. The rate densi-
ty of the aggregate model is, therefore, the
sum of the rate densities of the crustal, inter-
face and slab models at locations within region
of Figure 5D, the sum of the rate densities of
the crustal and interface models at other loca-
tions within region of Figure 5C, and the rate
density of the crustal model alone at other
locations within region of Figure 5B. The com-
position of this aggregate model is illustrated
in Figure 8.

The fit and performance of the aggregate
EEPAS models were compared with that of the
simple EEPAS models fitted to all of the data in
the 0-120 km and 0-45 km depth ranges (Table
8). The results are summarized in terms of the
information scores for the fitting and testing
periods in Table 9. This table shows that in
three comparisons out of four, the aggregate
model has a lower information score than the
corresponding simple model, the exception
being the 0-45 km depth range during the fit-
ting period. During the fitting period, the
information score of the aggregate model is
negatively affected by the high number of fit-
ted parameters (12) compared to the simple
model (4). However, it is during the testing
period, when the number of fitted parameters
has no impact on the information scores, that
the deficit of the aggregate model compared to
the simple model is greatest.

Depth resolution in earthquake
forecast experiments

The analysis of the previous section indicates

that depth selection is an important issue when
constructing earthquake forecasting models
based on past seismicity. The EEPAS model is
typical of such forecasting models in that it does
not discriminate between the depths of earth-
quakes in the explanatory catalogue or the tar-
get set. Ideally such models would be 3-dimen-
sional rather than 2-dimensional, and forecast
experiments, like those being conducted in the
CSEP testing centers, would measure the abili-
ty of models to forecast the depth of earth-
quakes as well as their latitude, longitude, mag-
nitude and time of occurrence. In practice, the
CSEP testing centers have adopted different tar-
get depth ranges: 0-30 km in California,39 0-40
km in New Zealand,8 and 0-30 km and 0-100 km
in different testing regions in Japan.9 Depth
resolution is clearly more important in subduc-
tion regions like those of Japan and New
Zealand, where the seismicity extends to depths
of several hundred kilometres, than in trans-
form plate boundary regions like California,
where the seismicity is mostly confined to the
top 20 km of the crust. In the former regions,
dividing the target region into depth layers, as
is being proposed for a CSEP experiment in the
Kanto region of central Japan (K. Nanjo, per-
sonal communication, 2011), might allow 2D
models to be used effectively in a 3D experi-
ment. Modellers could take account of tectonic
categories by careful selection of depths in the
input catalogue for each layer. However, such
layering is practicable only in the best-instru-
mented onshore regions where the seismo-
graph network is able to reliably estimate earth-
quake depths. 

Conclusions

Distinguishing the three tectonic categories
of earthquake has generally confirmed the
hypothesis that earthquake interactions are
stronger between earthquakes in similar tec-
tonic categories than between those of different
categories. This is an intuitively obvious result,
but one that it is important to demonstrate. Our
analyses have shown that for forecasting the
major earthquakes within one tectonic category,
the fit and performance of the EEPAS model is
improved when restrictions are applied to the
tectonic category of the predictor set of earth-

quakes. The optimal EEPAS model uses slab and
interface events as precursors to major slab
earthquakes, interface events only as precur-
sors to major interface events, and crustal
events only as precursors to major crustal
events. For the smoothed-seismicity component
of the EEPAS model, it is optimal to use slab and
interface events to forecast the location of
earthquakes in the slab, interface events only to
forecast the location of earthquakes on the
interface, and both crustal and interface events
to forecast the location of events on the inter-
face. The optimal fits to different categories
reveal appreciable differences in the scaling of
precursor time and area. In particular, the pre-
cursor times for crustal earthquakes are rela-
tively long and the precursory areas for slab
earthquakes are relatively small, compared to
the other categories and to the scaling relations
derived from examples of the precursory scale
increase phenomenon.

The results of the fitting exercise have been
partially borne out by the performance of the
models on the testing set, but further testing
on future data would provide a stronger confir-
mation of the optimal model for each tectonic
category. 

The robustness of the conclusions obtained
here using the Japan earthquake catalogue
could be tested by similar studies of other well-
catalogued regions of the world where subduc-
tion is present. However, there are presently
no other regions with catalogues to match that
of Japan in quality and quantity of data. 

The obvious explanation for the differences
between tectonic categories in the EEPAS
parameters reflecting the scaling of precursor
time and area is that different tectonic
regimes behave differently with respect to
their crustal properties, such as state of stress
and rate of deformation. However, studies of
wider regions could clarify whether the
observed differences in scaling are actually a
characteristic of the tectonic categories them-
selves or of the particular conditions prevailing
in the Japan region. Numerical and physical
modelling of the earthquake generating
process may in time provide insights into
these differences. 
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Table 9. Information scores of aggregate and simple EEPAS models.

Information score
Period Depth range Aggregate model Simple model

Fitting 0-120 km 1.54 1.59
period 0-45 km 1.60 1.58
Testing 0-120 km 1.08 1.29
Period 0-45 km 1.03 1.15
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