

Role of microRNAs in solid tumors

Rie Hamano, Hideshi Ishii, Hiroshi Miyata, Yuichiro Doki, Masaki Mori Department of Gastroenterological

Surgery, Osaka University Graduate School of Medicine, Osaka, Japan

Abstract

Accumulating experimental evidence indicates that microRNAs play important roles in various biological processes, such as cell differentiation, proliferation, metabolism and apoptosis. In addition, several reports concluded that altered expression of specific microRNA genes contributes to the initiation and progression of cancer. Here, we summarize the current knowledge about aberrant expression of various microRNAs in human solid cancers (e.g., lung, breast, and gastric cancers), their target proteins, and the relationship between their expression and response to chemotherapies. We also review the potential for using microRNAs as biomarkers for the diagnosis and cancer therapy. The development of treatment strategies against human solid cancers based on the profile and/or certain features of microRNAs is promising.

What is microRNA?

MicroRNAs are noncoding, single-stranded RNAs, 18-25 nucleotides long, and were first reported in *Caenorhabditis elegans* in 1993.¹ Subsequent studies led to the identification of microRNAs in human RNA,² as well as to the understanding of their mechanisms of action. Most human miRNAs are found within introns of either protein-coding or noncoding mRNA transcripts,³ and they do not code for any protein although they are RNA sequences.

MicroRNA genes are generally transcribed by RNA polymerase II in the nucleus to form pri-miRNA transcripts. These are processed into pre-miRNAs by a microprocessor complex, which contains the Rnase III enzyme Drosha⁴ and DGCR8.⁵ Exportin5 and a RanGTP⁶ transport the pre-miRNAs from the nucleus to the cytoplasm, where they are further processed by the RNAase III enzyme Dicer.⁷ The mature miRNA is retained in RISC (RNA-induced silencing complex)⁸ and it is currently understood that microRNAs mainly bind to the 3' untranslated region (UTR) of their target mRNAs. However, recent studies have reported that microRNAs do not only bind to 3'UTR but also to 5'UTR^{9,10} or open reading frame (ORF)^{11,12} of the target mRNA. By binding to the 3'UTRs, 5'UTR or ORF of target mRNAs, microRNAs regulate the translation of proteins from mRNA or degrade the mRNA itself.¹³ While microRNAs are thought to repress the translation of target mRNAs, recent results demonstrated that microRNAs can activate the expression of the target genes.¹⁴ In the same study, microRNA was reported to be essential for translation activation under growth arrest conditions. Regulation of translation by microRNAs might change from repression to

activation depending on the cell cycle.

In addition, because microRNA can bind even to mRNA that is not partially complementary,¹⁵ microRNA and mRNA do not correspond one-to-one,¹⁶ such that one microRNA may regulate several mRNAs or one mRNA may be regulated by several microRNAs. For example, in human gliomas, miR-34a inhibits the expression of multiple oncogenes (e.g., c-Met, Notch-1/Notch-2 and CDK6) by binding to their 3'-UTR and suppressing tumor growth.¹⁷ Thus, these microRNAs potentially regulate approximately 30% of all genes encoding human proteins¹⁸ and appear to achieve a wide range of cell functions, such as cell generation, differentiation, and proliferation.

Aberrant expression of microRNAs in solid cancers

With regard to the relationship between microRNA and cancer, the initial studies reported that B-cell chronic lymphocytic leukemia is associated with downregulation or deletion of miR-15 and miR-16 genes.¹⁹ Other studies subsequently showed that more than half of the microRNAs were located near the unstable DNA region, where chromosomal deletions or amplifications associated with cancer in large the majority of cancer cells.²⁰ Thus, in cancer tissues, detailed profiling of microRNA should be informative and useful for evaluation of the cancer properties. In fact, it is reported that the expression levels of microRNAs vary widely depending on the cancer type and degree of differentiation⁹ and that cancers can be even classified according to the microRNA profile, but not the mRNA profile.²¹

MicroRNAs include both microRNAs that act to inhibit cancer and microRNAs that conversely target tumor suppressor genes and act like oncogenes. To date, numerous reports have examined the aberrant expression of microRNAs and the association between the level of microRNA expression and prognosis in a number of human carcinomas. Table 1 lists the major microRNAs with reported aberrant Correspondence: Masaki Mori, Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81.6.6879.3251 - Fax: +81.6.6879-.3259. E-mail: mmori@gesurg.med.osaka-u.ac.jp

Key words: microRNA, cancer, anti-cancer therapy, biomarker.

Conflict of interest: the authors report no conflicts of interest.

Received for publication: 16 November 2010. Revision received: 13 January 2011. Accepted for publication: 17 January 2011.

This work is licensed under a Creative Commons Attribution 3.0 License (by-nc 3.0).

©Copyright R. Hamano et al., 2011 Licensee PAGEPress, Italy Journal of Nucleic Acids Investigation 2011; 2:e2 doi:10.4081/jnai.2011.e2

expression in solid cancers. To study the relationship between microRNAs and cancer, it is important to examine not only aberrant expressions of microRNAs in carcinomas but also the gene targeted by these microRNAs and to understand their overall roles in cancer. For example, miR-21 is a typical oncogene microRNA whose aberrant expression has been confirmed in various cancers such as breast cancer,²² lung cancer,²³ esophageal cancer,²⁴ colorectal cancer,²⁵ pancreatic cancer,²⁶ and hepatocellular carcinoma.²⁷ Interestingly, the Bcl-2²² and PTEN²⁷ genes are target genes of miR-21, and the oncogene-like function of miR-21 is mediated through the suppression of such tumor suppressor genes.

Lung cancer

One major microRNA, the let-7 family, was first reported to alter the prognosis of patients with lung cancer.²⁸ Oncogenes such as RAS 29) and HMGA2³⁰ are already known as target genes of the let-7 family. In 2008, the first microRNAknockout mouse was reported, the miR-17-92 knockout mouse, which exhibited hypoplasia of the lungs and B lymphocytes.³¹ MiR-17-92 may also be involved in the process of lung carcinogenesis, and further studies are desirable. In fact, several reports have described the relationship between the expression of miR-17-92 and lung cancer.³²⁻³⁵ On the other hand, the expression of microRNA was recently reported to correlate with smoking.³⁶ Based on the relationship between smoking and lung cancer, further studies are needed to determine the relationship between smoking and microRNA expression. It is anticipated that such studies will allow the design of new approaches for cancer treatment.

Breast cancer is a major cause of cancer mortality in women,³⁷ and one of the cancers most studied in relation to microRNA. The aberrant expression of many microRNAs has been reported (Table 1). Several studies reported the association between stem cells or cancer stem cells and microRNAs, such as the let-7 family.³⁸ miR-200c,³⁹ and miR-30,⁴⁰ in breast cancer. Furthermore, it is interesting that the number of studies conducted using a murine breast cancer model has been increasing relative to studies on other cancers. One study showed that miR-31 can impede local invasion and suppress metastasis from primary breast tumor in vivo and that the expression level of miR-31 correlates inversely with metastasis in human breast cancer.⁴¹ Another study found low expression levels for miR-126 and miR-335 in primary human breast tumors and restoration of the expression of these microRNAs significantly reduced bone metastases in vivo.42

Esophageal cancer

Enzymes that contribute to the biogenesis of microRNA in esophageal cancer were first reported in 2006.43 However, there are few reports that have described the relationship between esophageal cancer and aberrant expression of microRNA, compared with other solid tumors (Table 1). This may be due to the difficulty in collecting tissue samples from patients with esophageal cancer because esophagectomy is mostly performed in limited number of institutions. In this regard, a recent study using 70 tissue samples of esophageal cancer collected from several centers in three countries found that up-regulation of miR-21 expression and down-regulation of miR-375 expression correlated significantly with poor prognosis.44 Further studies are needed to explore the potential therapeutic effects of microRNAs, such as improvement in sensitivity to radio- and chemo-therapy.

Gastric cancer

The expression of microRNA in gastric cancer was first reported in 2006 in a study that used microarray analysis;45 the results showed aberrant expression of 28 microRNAs (22 upregulated and 6 down-regulated). Gastric cancer includes various histopathological subtypes, such as three degrees of differentiation. mucinous, papillary and signet ring cell, and microRNAs are expressed differentially in this cancer according to histopathological subtype.45 Thus, detailed analysis based on classification of histopathological types is necessary for proper analysis of aberrant expression of microRNA in gastric cancer. Although the number of studies on microRNA in gastric cancer is smaller than colorectal cancer and breast cancer, reports published in 2010 indicate increased interest in the aberrant expression of microRNA in this type of cancer (Table 1).

Colorectal cancer

Similar to breast cancer, the expression of microRNA, including aberrant expression, in colorectal cancer has been the topic of several studies (Table 1). For example, among patients with stage II colorectal cancer, those with high expression of miR-320 and miR-498 are considered to have better relapse-free survival than patients with low expression.⁴⁶ The same report indicated that analysis of the expression of a combination of several microRNAs can predict relapse with 81% accuracy rate, suggesting the potential of microRNA as a biomarker of recurrence. Another feature of colorectal cancer is the association between the expression of microRNAs and the p53 pathway ^{47.51}

Hepatocellular carcinoma

Several reports have described the aberrant expression of microRNAs in hepatocellular carcinoma (HCC) (Table 1). The expression of microRNA is also reported to be associated with HBV and HCV infections^{52,53} which are closely related to HCC, and the association with hepatocarcinogenesis has been indicated.⁵⁴ Reduced expression of miR-122 in a chimpanzee model of HCV hepatitis/HCC was reported to result in successful control of HCC,55 and the clinical application to humans is greatly anticipated.

Pancreatic cancer

Pancreatic cancer is one of the most malignant cancers, and ranks eighth among the causes of death worldwide.37 In addition to searching for aberrant expression of microRNA in pancreatic cancer (Table 1), analysis of the clinical significance of microRNA on early detection of cancer and the therapeutic outcome would be desirable. In this regard, it has been reported that profile analysis of microRNA expression can differentiate pancreatic cancer from chronic pancreatitis,⁵⁶ which is sometimes difficult to distinguish from pancreatic cancer. In fact, the expression of miR-196a-2 has already been used as a marker for differentiating pancreatic cancer from pancreatitis.57 MiR-155 is also reportedly useful for early detection of intraductal papillary mucinous neoplasm (IPMN).58

Ovarian cancer

Although there are numerous reports on the aberrant expression of various microRNAs in ovarian cancer (Table 1), interestingly, there are almost no reports on miR-21, which is a typical proto-oncogene. Several studies examined the relationship between microRNA and

sensitivity to cisplatin or paclitaxel chemotherapy, which is often used in clinical settings. For example, among patients with ovarian cancer undergoing cisplatin-based chemotherapy, the complete responders to chemotherapy showed significantly higher expression of let-7i in their tumors compared with the other patients that did not respond completely, and ovarian cancer cells with overexpression of let-7i were more sensitive to cisplatin than those with low expression.⁵⁹

Glioblastoma

Glioblastoma is one of the highest-grade tumor among human intracranial tumors, and aberrant microRNA expression in glioblastoma has been reported in many studies (Table 1). To improve the prognosis of patients with glioblastoma, the development of biomarkers for early detection of glioblastoma, for example circulating microRNAs, is needed. This is particularly important since glioblastoma respond well to treatment with temozolomide, an oral alkylating agent often used for the treatment of intracranial tumors (Table 2).

Anti-cancer therapy and microRNA

In addition to the aforementioned studies that identified aberrant expression of microRNAs in various cancers, it is anticipated that novel anticancer therapeutic strategies will be designed in the future that are based on microRNAs, including chemotherapeutic agents, anti-hormone receptor agents and radiotherapy that target specific microRNAs. Furthermore, changes in the expression levels of microRNAs during any such therapy, relative to the baseline (using microarray analysis), could be also used to predict the sensitivity/resistance of tumors to the antitumor agents as well as monitor the response to such treatment.

Table 2-1 shows the relationship between certain microRNAs and the response to chemotherapy. For example, previous studies using microRNA microarray analysis showed down-regulation of 10 microRNAs and up-regulation of two microRNAs in chemoresistant gastric cancer cells compared with parent cells⁶⁰ and down-regulation of two microRNAs and up-regulation of 13 microRNAs in chemoresistant glioblastoma cells compared with parent cells.⁶¹ Another study found significantly low levels of let-7i expression in chemotherapy-resistant patients.59 These studies highlight the potential application of microRNAs to the prediction of the tumor response to chemotherapy.

Table 2-2 also lists few microRNAs that were

Table 1. Aberrant expression of microRNA in solid cancers.

MicroRNA	Target	Expression in tumor	Function	ref
Lung				
lot 7	NS	Down	Tumor suppressor	80
lot 7	HMCA2 K RAS	Down	Tumor suppressor	00
let 7	CDKC N DAS	Down		01
101-7 miD 150 16	CUNO, N-NAD Cuclin D1 D2 E1	Down	fulliof suppressor	91
IIIIK-15a,10	CyclinD1, D2, E1	Down	Cell cycle arrest is induced	92
miR-17-92	HIFIO	NS	miR-17-92 regulates HIF1 α expression under normoxia	34
miR-17-92	NS	Up	miR-17-92 is relation to development of B cell and lung	31
miR-21	NS	Up	oncogene, EGFR signaling regulates miR-21 expression	93
miR-21	NS	Up	miR-21 knock-out mice suppresses Tumor development	94
miR-29	DNMT3A, 3B	Down	Tumor suppressor	95
miR-128b	EGFR	NS	miR-128b LOH is positive prognostic factor	96
miR-145	Mucin1	Down	Tumor suppressor	97
miR-221, 222	PTEN, TIMP3	Up	Oncogene	98
miR-488, 503, 647	NS	NS	miR expression pattern to predict recurrence	99
Breast				
let-7	HRAS, HMGA2	Down	Tumor suppressor	38
miR-9	CDH1	Up	Oncogene	100
miR-10b	RHOC	Up	Oncogene	101
miR-10b	HOXD10	Un	Oncogene	102
miR-17/20	IL-8 CK8 CXCL1	Down	Tumor suppressor	103
miR-21	PDCD4	Un	Oncodene	104
miR_20a	ТТР	Un	Oncogene	105
miR 30	LIDCO ITCR3	Down	Tumor supproceor	105
miD 21	E2d2 ITCA5 MMD6 ata	Down		40
miD 196 995	F2U5, ITOA5, MINIFO ELC.	Down		41
miD 146a h	JOA4, TELIASCIII	Down		44
IIIIK-140a,D	IKANI, IKAPO	Dowii	Tumor suppressor	100
IIIIK-193D	UPA ZED1 CIDI	DOWI	Iumor suppressor	107
mik-200family, 205	ZEBI, SIPI	NS D	mik-200 family regulate ZEB1 and SIP1	108
miR-200C	BMII	Down	lumor suppressor	39
miR-373, 520C	CD44	Up	Oncogene	109
M1K-001	Nectin-1, StarD10	Up	Oncogene regulated by SINAII	110
Esophagus				
miR-10b	KLF4	Up	Oncogene	111
miR-16, 30e, 200a	NS	Up	Oncogene	112
miR-21	PDCD4	Up	Oncogene	24
miR-21, 375	NS	miR-21: up, -375: Down	miR-21: oncogene, miR-375: Tumor suppressor	44
miR-106b	p21	Up	Oncogene	113
miR-133a,b,145	FSCN1	Down	Tumor suppressor	114
miR-196a	ANXA1	Up	Oncogene	115
miR-373	LATS2	Up	Oncogene	116
Stomach				
let-7g,miR-214, 433	NS	miR-422:	let-7, miR-422: Tumor suppressor;	117
5, ,		Down	miR-214: oncogene	
miR-9	NF-κβ	Down	Tumor suppressor	118
miR-9 433	RAB34 GRB2	Down	Down-regulated in gastric cancer	119
miR-23a	IL-6R	Un	Oncogene	120
miR-31	NS	Down	Down-regulated in gastric cancer	121
miR-101	F7H2 Cox2 Mcl-1 Fos	Down	Tumor suppressor	121
miR-196	Crk	Down	Tumor suppressor	122
miR_120	CDK6	Down	Tumor suppressor	120
miD 190 9	SOVA	Down		124
miD 120-2	DUNY2	Down		120
miD 1/1	NC	Down		120
miD 1010	NOTCH KDAS	Down		127
miR-101C	MoCD2	Down		128
miR-212	NIEUF2 Dobol	Down		129
INIK-218	K0001	Down	lumor suppressor	130
miK-218	ECOP	Down	lumor suppressor	131
m1R-372	LATS2	Up	Oncogene	132
miR-375	PDK2, 14-3-3	Down	Tumor suppressor	133
miR-421	CBX7, RBMXL	Up	Up-regulated in gastric cancer	134

Continued next page.

Table 1. Continued from previous page.

Colon				
miR-16	Wip1	Down	Down-regulated in colon cancer	47
miR-18*	KRAS	Down	Tumor suppressor	135
miR-21	CDC25A	Up	Oncogene	136
miR-34a	E2F	Down	Tumor suppressor	137
miR-106a	E2FI	Down	Tumor suppressor	138
miR-107	HIFIβ	Down	Tumor suppressor	48
miR-143	DNMT3A	Down	Tumor suppressor	139
m1R-145	IRSI	Down	Tumor suppressor	140
miR-155	MSH1, MSH2	Up	Oncogene	141
miR-192	NS	NS	Proliferative effect of miR-192 depends on p53	50
m1R-196a	NS	Up	Oncogene	142
miR-320, 498	NS	Down	Tumor suppressor	46
miR-675	RB	Up	Oncogene	143
Liver			0	144
miR-18a	EKO	Up	Oncogene	144
miR-21	PIEN	Up	Uncogene	27
miR-26a	INS	Down	Tumor suppressor	145
miR-101	McI-I	Down	Tumor suppressor	68
m1R-122	CyclinGI	Down	Tumor suppressor	146
m1R-122	NS	Down	Tumor suppressor	147
m1R-151	PhoGDIA	Up	Oncogene	148
miR-181b	TIMP3	Up	Oncogene	149
miR-193b	Mcl-1	NS	HCV proteins alter miR expressions	53
miR-196	Bach1	NS	miR-196 inhibits HCV expression	54
miR-221	CDKN1C/p57, CDKN1B/p27	Up	Oncogene	150
miR-221	Bmf	Up	Oncogene	151
miR-222	PPP2R2A	Up	Oncogene	152
miR-223	STMN1	Down	Tumor suppressor	153
Pancreas				
miR-21	NS	Up	Oncogene	154
miR-27a	Sproutv2	Up	Oncogene	155
miR-96	KRAS	Down	Tumor suppressor	156
miR-107	CDK6	Down	Tumor suppressor	157
miR-146a	EGFR. IRAK1. NF κ B. MTA2	Down	Tumor suppressor	158
miR-155	TP53INP1	Up	Oncogene	159
miR-196a-2	NS	Up	Oncogene	57
miR-210	EFNA3	Un	Oncogene	160
Ovary	2110.0	°P	0.0050.00	100
let-7i	NS		Tumor suppressor	59
miR-9, 223	NS	miR-9: down.	miR-9: Down-regulated.	161
		miR-223: down	miR-223: up-regulated in recurrent ovarian cancer	
miR-15a, 16	Bmi-1	Down	Tumor suppressor	162
miR-20a	APP	Up	Oncogene	163
miR-27a	NS	Un	Oncogene	164
miR-31	CEBPA STK40 E2F2	Down	Tumor suppressor	165
miR-34b 34c	NS	Down	Tumor suppressor	166
miR-125a	ARID3B	Un	Oncogene	167
miR-185	Six1	Down	Tumor suppressor	168
miR-199a	IKKB	Down	Tumor suppressor	169
miR-199a 214	NS	Up and down	Twist1 regulates miRs	170
miR-200a 200b	ZEB1 2	In	un-regulated in ovarian cancer	171
miR-210	E2F3	NS	miR-210 is a key regulator of hypoxia	172
miR-210	CDKN1C	Down	Tumor suppressor	172
Clichlesterre	CDIGITC	Down	Tunior Suppressor	110
GIIODIASTOIIIA	ECED	Doum		174
IIIIK-1		DOMI	Tumor suppressor	1/4
INIK-IUD	KIIOU, UPAK	Up U-	Olicogene	170
INIK-17-92	Sillad, etc.	Up	Uncogene	170
miK-17-92	CIGF	Up	Uncogene	177
miK-21	NS DEEN DD1 MERCE	Up	Uncogene	178
miR-26a	PTEN, RB1, MEKK2	Up	Oncogene	179
miR-34a	NC	Down	Tumor suppressor	17
miR-128	Bmil	Down	Tumor suppressor	180
miR-153	Bcl-2, Mcl-1	Down	Tumor suppressor	181
miR-196	NC	Up	High expression shows poorer survival.	182
miR-221, 222	p27, p57	Down	Tumor suppressor	183
miR-222, 339	ICAM1	Up	MiRs correlate with CTL-mediated cytolysis	184
m;D 90C	HCS	Un	miP 206 contributor to angiogeneoic	195

NS; not stated

reported to show changes in their expression during cancer treatment. For example, significant reductions in let-7a and let-7b expression levels, relative to the baseline levels, were noted at 8 h after irradiation in lung cance,⁶² where a significant increase in miR-34 expression was monitored following irradiation-induced DNA damage⁶³ in breast cancer tissue. The development of resistance to chemotherapy is also a problem during cancer treatment. In the cancer stem cell theory, the pluripotent and self-replication properties of the stem cells affect resistance to chemotherapy 38,⁶⁴ while microRNAs are known to regulate stem cell functions.⁶⁵⁻⁶⁷ Thus, microRNAs seem to affect the stability of resistance to antitumor therapies in cancerous tissues. In fact, several recent studies described the correlation between resistance to anticancer drugs and expression of microRNAs known to be involved in stem cell functions (Table 2-2). Furthermore, many of microRNAs are known to enhance sensitivity or reduce the resistance to anti tumor therapy. For example, the hematomas in which miR-101 had been introduced showed higher sensitivity to anticancer agents⁶⁸ and the expression of miR-206 correlated inversely with that of estrogen receptor- α .⁶⁹ Table 2-3 lists some MicroRNAs known to influence the sensitivity to anti-cancer therapy.

Regulation of microRNA

Because microRNA regulate the expression of many mRNAs and microRNAs do not correspond one-to-one to mRNA, a comprehensive analysis is required to understand the regulation of such expression. To gain a better understanding of the overall picture of carcinogenesis, including the function of microRNAs, one should understand the mechanisms involved in the regulation of microRNA expression itself. Previous studies proposed that epigenetic mechanisms and other proteins regu-

Table 2. microRNAs related to sensitivity of anti-cancer therapy.

MicroRNA	Treatment	Target	Function	Year	Ref
2-1. MicroRNAs that are associated with response prediction					
Stomach					
miR15a,16	ADR, VCR, VP16, CDDP	NS	Increase sensitivity	2008	60
Ovary	,				
let-7i	CDDP	NS	Increase sensitivity	2008	59
Glioblastoma					
miR-195	Temozolomide	NS	Increase sensitivity	2010	61
2-2. MicorRNAs those exp	pressions altered during a thera	ару	3		
Lung					
let-7b,g	Radiation	NS	Increase sensitivity	2007	62
Several miRs	Radiation	Int J oncol	22 miRs expression were changed	2009	186
Breast					
miR-34	Radiation	NS	Decrease sensitivity	2009	63
Pancreas	0		NC	9000	107
IIIIK-22	Curcumin	ESKI, SPI	IN5	2008	10/
2-3. MicroRNA that influe	nces the sensitivity to anti-canc	er therapy			
Lung		NO	T	0010	100
miR-181a, 630	CDDP	NS D 10	Increase sensitivity	2010	188
MIK-181D	CDDP	BCIZ	Increase sensitivity	2010	189
Breast	En: ADM	ILDAG LIMCAN	Delated to tumor initiating calls	2007	20
Iet-7	Epi-ADM	n-kas, ninoaz	Related to tumor mitiating cens	2007	99
miR 975	ADR VCP	Bel9 MRP1	Docrosco consitivity	2010	100
5 FU CDDP	ADR, VCR,	DCI2, MINI I	Decrease sensitivity	2010	150
$J-\Gamma O, CDD\Gamma$ miR 206	As above	Bay	Docrosco consitivity	2010	101
Stomach	AS above	Dax	Decrease sensitivity	2010	131
miR_221 222	Radiation	NS	Decrease sensitivity	2010	192
miR_451	Radiation	MIF	Increase sensitivity	2010	192
Colon	Rudiation	14111	increase sensitivity	2000	100
miR-140	5-FU	HDAC4	Decrease sensitivity	2009	194
miR-143	5-FU	NS	Increase sensitivity	2009	195
miR-215	MTX. TDX	NS	Decrease sensitivity	2010	196
Liver					
miR-26a	IFNa	NS	Decrease sensitivity	2009	197
miR-199a-3p	ADR	mTOR, c-Met	Increase sensitivity	2010	198
Pancreas		,	5		
miR-21	GEM	NS	Decrease sensitivity	2010	199
miR-21	5-FU	NS	Decrease sensitivity	2010	200
miR-21	GEM	NS	Decrease sensitivity	2009	201
Ovary			·		
miR-27a	TXL	MDR1	Decrease sensitivity	2010	202
miR-100	everolimus	MTOR	Increase sensitivity	2010	203
miR-200c	TXL	TUBB3	Increase sensitivity	2009	204
Glioblastoma					
miR-21	Temozolomide	Bax, Bcl-2	Decrease sensitivity	2010	205
miR-21	VM-26	LRRFIP1	Decrease sensitivity	2009	206

CDDP, cisplatin; ADR, doxorubicin; VCR, vincristine; VP16, etoposide; MTX, methotrexate; TDX, thymidylate synthase inhibitor Tomudex; GEM, gemcitabine; TXL, taxol; VM-26, Teniposide; NS. not stated.

Epigenetic mechanisms

Epigenetic modification means aberrant gene expression due to DNA methylation or histone deacetylation. DNA methylation occurs in specific genomic areas called CpG-islands, which are commonly present in the promoter area of the gene.⁷⁰ Methylation of CpG-island is triggered by DNA methyltransferases (DNMTs) and histone modifications are catalvzed by histone deacetylases (HDACs) and histone methyltransferases (HMTs). Tumor genes are globally hypomethylated compared with those of normal tissues,71 and methylation of CpG islands in the gene promoter area results in inactivation of tumor suppressor genes.⁷⁰ Thus, epigenetic modifications could be involved in carcinogenesis, in addition to other well-defined genetic mechanisms, such as gene mutations and loss of deficiency of heterozygosity.

It was demonstrated recently that certain genes, in particular those with hypermethylated promoters, require Dicer to maintain the epigenetic status.⁷² As mentioned above, Dicer is a key enzyme in microRNA biogenesis. That is a first report that shows the correlation between epigenetic changes of DNA and microRNAs.

Then, Several other studies have reported that epigenetic mechanisms regulate the expression levels of microRNAs. For example, the first report in 2006^{73} showed that abnormal

methylation correlates with miR-127 expression in several cancer cells. Although miR-127 is not expressed in cancer cells, strong upregulation of this microRNA was noted after treatment with chromatin-modifying drugs (which are also DNA demethylating agents and HDAC inhibitors). Another study showed that the oncoprotein AML1/ETO, an acute myeloid leukemia-associated fusion protein, induced heterochromatic silencing of miR-223 by recruiting DNMTs and HDAC1 activities.⁷⁴ These results point to a complex epigenetic regulation of microRNAs. Table 3-1 lists a group of microRNAs known to be regulated by epigenetic mechanism.

On the other hand, new evidence suggests that microRNAs can control the expression levels of DNMTs and HDACs. For example, microRNA members of the miR-29 family directly target DNMT3A and DNMT3B. Enforced expression of the miR-29 family induced reexpression of methylation-silenced tumor suppressor genes in lung cancer cells, which resulted in inhibition of cancer growth in xenograft models.75 Other studies showed that miR-1 directly targeted HDAC-4 in murine myoblasts⁷⁶ while miR449a regulated cell growth by repressing HDAC-1 expression in human prostate cancer cells.⁷⁷ Table 3-2 lists few microRNAs known to control epigenetic mechanisms.

The above studies enhance our understanding of aberrant epigenetic mechanisms in cancers and may prove useful in identifying new targets for cancer therapy.

Regulation by other factors

Among the various families of microRNAs, the let-7 family, which is known to have tumor suppressor function, is under the control of LIN28, which is overexpressed in germ cells by RNA-binding proteins, at the stage of Drosha enzyme processing.⁷⁸ The latter study indicated the specificity of the regulatory mechanism of LIN28 to the let-7 family by demonstrating the lack of any inhibitory effects on other microRNA. Dicer, another enzyme involved in the processing of microRNAs, also inhibits the let-7 family and forms a negative feedback loop with let-7 family.79 Other studies reported the regulation of microRNAs by other transcription factors, such as p53⁸⁰ and c-myc,⁸¹ suggesting that many factors are intricately involved in the mechanisms that regulate microRNAs in cancers. The number of microRNA-related regulatory factors reported to date is not very large, but it is expected to expand exponentially in the future.

MicroRNAs as biomarkers for cancer

Although many aspects of microRNA formation in the cell remain unclear, it is becoming evident that microRNAs are more stable in the cells than mRNA. Accordingly, it is anticipated that microRNAs may serve as biomarkers of cancer better than mRNA. Historically, intrinsic microRNA levels in the circulation were

MicroRNA	Cancer type	Target	Detail	Year	Ref	
3-1. Some microRNAs of which expression controlled by epigenetic mechanism						
let-7a-3	Ovary	NS	let-7a-3 methylation is associated with survival	2007	207	
miR-1	Liver	FoxP1, MET, HDAC4	Overexpression in cells treated with 5- AZA	2008	208	
miR-9-1	Breast	NS	Overexpression in cells treated with 5-AZA	2008	209	
miR-9, 34b/c, 148a	Various types	oncogenes	Overexpression in cells treated with 5-AZA	2008	210	
miR-9, 129, 137	Colon	NS	Overexpression in cells treated with 5- AZA	2009	211	
miR-34b, -34c	Colon	BTG4	miR-34b/c methylation is frequently observed in cancer cells	2008	212	
miR-124a	Colon	CDK6	Overexpression in cells treated with 5-AZA	2007	213	
miR-127	Bladder	BCL6	Overexpression in cells treated with 5-AZA	2006	73	
miR-129-2	Ovary	SOX2	Overexpression in cells treated with epigenetic drugs	2009	214	
miR-137a	Colon	LSD1	miR-137 methylation is specific for cancer	2010	215	
miR-223	Leukemia	NS	AML1/ETO induced heterochromatic silencing of miR-223	2007	74	
miR-370	Biliary duct	MAP3K8	Overexpression in cells treated with 5-AZA	2008	216	
miR-512-5p	Stomach	Mcl-1	Overexpression in cells treated with 5- AZA	2009	217	
3-2. Some microRNAs that controlls epigenetic mechanism						
miR-1	Myoblast	HDAC-4	MiR-1 represses HDAC-4	2006	76	
	(not malignant)					
miR-29 family	Lung	DNMT3a, 3b	Enforced expression restores normal patterns	2007	75	
			of DNA methylation			
miR-29b	Leukemia	DNMT3a, 3b	Enforced expression restores normal patterns	2009	218	
			of DNA methylation			
miR-148a, b	Various types	DNMT3b	MiR-148 represses DNMT3b	2008	219	
MiR-449	Prostate	HDAC-1	MiR-449 directly targets HDAC-1	2009	77	

Table 3. microRNAs that are regulated by epigenetic gene silencing.

5-AZA, 5-Aza-20-deoxycytidine; NS, not stated.

found to be relatively stable against endogeneous RNAase.⁸² Subsequent studies reported higher blood miR-195 and let-7 expression levels in patients with breast cancer compared with healthy subjects and that these expression levels fell after surgical excision of the tumor.⁸³ Furthermore, the expression levels of miR-29a and miR-92a were also found to increase with the stage of colorectal cancer,⁸⁴ suggesting their potential suitability as a cancer screening tool.

Recent studies have reported measurement of microRNAs in other body fluids in addition to blood, such as feces⁸⁵ and sputum.⁸⁶ For example, significantly higher expression levels of miR-21 were found in the sputum of patients with lung cancer compared with healthy subjects, indicating high sensitivity and specificity.87 On the other hand, the expression levels of miR-125a and miR-200a in the saliva were significantly lower in patients with oral cancer than healthy subjects.⁸⁸ Further studies are needed to design simple and noninvasive assays that accurately measure microRNAs collected from human tissues. Such methods will be helpful for screening of cancer or assessment of the therapeutic effects of anti-cancer treatment.

Future perspective of microRNA

As noted earlier, microRNA are expected to play a major role in the future as biomarkers for screening cancer, predicting response to therapies, and assessing the effect of treatment.

Progress is also anticipated in the development of new microRNA-based anti-cancer therapies. Such therapies could be designed to restrict cancer growth by applying the mRNA regulatory function of microRNA to inhibit oncogenes or activate tumor suppressor genes. Alternatively, new therapies could be designed based on the finding of increased potency of standard chemotherapies when combined with microRNAs.

We are only just beginning to understand microRNAs and their hidden potential. Worldwide research on microRNAs, including clinical application, is currently underway. Treatment strategies against solid cancers based on profile or features of microRNAs are expected to be developed in the near future.

References

1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-54.

- Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
- Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:1902-10.
- 4. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9.
- 5. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-5.
- 6. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-91.
- 7. Hutvágner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-8.
- Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60.
- 9. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008;30:460-71.
- Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA. 2007;104:9667-72.
- 11. Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame. RNA. 2010;16:2493-502.
- Qin W, Shi Y, Zhao B, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 2010;5:e9429.
- Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60.
- 14. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007;318:1931-4.
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
- Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003;115:787-98.
- 17. Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.

Cancer Res 2009;69:7569-76.

- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
- Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99:15524-9.
- 20. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:2999-3004.
- Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
- 22. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene 2007;26:2799-803.
- 23. Markou A, Tsaroucha EG, Kaklamanis L, et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008;54:1696-704.
- 24. Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res 2009;15:1915-22.
- 25. Slaby O, Svoboda M, Fabian P, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
- 26. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120:1046-54.
- 27. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-58.
- Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6.
- 29. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47.
- Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007;315:1576-9.
- 31. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008;132:875-86.

- Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-32.
- Matsubara H, Takeuchi T, Nishikawa E, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 2007;26:6099-105.
- 34. Taguchi A, Yanagisawa K, Tanaka M, et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008;68:5540-5.
- 35. Ebi H, Sato T, Sugito N, et al. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009;28:3371-9.
- 36. Izzotti A, Calin GA, Arrigo P, et al. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009;23:806-12.
- Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
- 38. Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131:1109-23.
- Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009;138:592-603.
- 40. Yu F, Deng H, Yao H, et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010;29:4194-204.
- 41. Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009;137:1032-46.
- 42. Tavazoie SF, Alarcón C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008;451:147-52.
- Sugito N, Ishiguro H, Kuwabara Y, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 2006;12:7322-8.
- 44. Mathé EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 2009;15:6192-200.
- 45. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257-61.
- 46. Schepeler T, Reinert JT, Ostenfeld MS, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res

2008;68:6416-24.

- 47. Zhang X, Wan G, Mlotshwa S, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 2010;70:7176-86.
- Yamakuchi M, Lotterman CD, Bao C, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 2010;107:6334-9.
- 49. Braun CJ, Zhang X, Savelyeva I, et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 2008;68:10094-104.
- 50. Song B, Wang Y, Kudo K, et al. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53microRNA circuit. Clin Cancer Res 2008;14:8080-6.
- 51. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008;105:13421-6.
- 52. Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 2009;49:1098-112.
- 53. Braconi C, Valeri N, Gasparini P, et al. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res 2010;16:957-66.
- 54. Hou W, Tian Q, Zheng J, Bonkovsky HL. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 2010;51:1494-504.
- 55. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198-201.
- 56. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007;26:4442-52.
- 57. Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007;297:1901-8.
- Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 2009;8:340-6.
- 59. Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008;68:10307-14.
- 60. Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by

targeting BCL2 in human gastric cancer cells. Int J Cancer 2008;123:372-9.

- 61. Ujifuku K, Mitsutake N, Takakura S, et al. miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 2010;296:241-8.
- 62. Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007;67:11111-6.
- 63. Kato M, Paranjape T, Müller RU, et al. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 2009;28:2419-24.
- 64. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-84.
- 65. Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway. Nature 2005;435:974-8.
- 66. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124-8.
- 67. Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008;134:521-33.
- Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009:1135-42.
- 69. Kondo N, Toyama T, Sugiura H, et al. miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 2008;68:5004-8.
- 70. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349: 2042-54.
- 71. Fabbri M. MicroRNAs and cancer epigenetics. Curr Opin Investig Drugs 2008;9: 583-90.
- 72. Ting AH, Suzuki H, Cope L, et al. A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells. Cancer Res 2008;68: 2570-5.
- 73. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with down-regulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43.
- 74. Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12:457-66.
- 75. Fabbri M, Garzon R, Cimmino A, et al.

MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007;104:15805-10.

- Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33.
- Noonan EJ, Place RF, Pookot D, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 2009;28:1714-24.
- Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008;320:97-100.
- Tokumaru S, Suzuki M, Yamada H, et al. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 2008;29:2073-7.
- He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4.
- O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated micoRNAs modulate E2F1 expression. Nature 2005;435:839-43.
- Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable bloodbased markers for cancer detection. Proc Natl Acad Sci USA 2008;105: 10513-8.
- Heneghan HM, Miller N, Lowery AJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 2010;251:499-505.
- 84. Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010;127:118-26.
- 85. Link A, Balaguer F, Shen Y, iet al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 2010;19:1766-74.
- Yu L, Todd NW, Xing L, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer Forthcoming 2010.
- Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 2010;67:170-6.
- Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009;15:5473-7.
- 89. Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007;67:7713-22.
- 90. Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008;105:3903-8.
- 91. Trang P, Medina PP, Wiggins JF, et al.

Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010;29:1580-7.

- 92. Bandi N, Zbinden S, Gugger M, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or downregulated in non-small cell lung cancer. Cancer Res 2009;69:5553-9.
- 93. Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 2009;106:12085-90.
- Hatley ME, Patrick DM, Garcia MR, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010;18:282-93.
- 95. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007;104:15805-10.
- 96. Weiss GJ, Bemis LT, Nakajima E, et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 2008;19:1053-9.
- Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 2010;70:378-87.
- 98. Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009;16:498-509.
- 99. Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010;70:36-45.
- 100. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010;12:247-56.
- 101. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007;449:682-8.
- 102. Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010;28:341-7.
- 103. Yu Z, Willmarth NE, Zhou J, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 2010;107:8231-6.
- 104. Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-9.

- 105. Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009;10:400-5.
- 106. Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 2008;27:5643-7.
- 107. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 2009;28:3937-48.
- 108. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
- 109. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008;10:202-10.
- 110. Vetter G, Saumet A, Moes M, et al. miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 2010;29:4436-48.
- 111. Tian Y, Luo A, Cai Y, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem 2010;285:7986-94.
- 112. Hu Y, Correa AM, Hoque A, et al. Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer 2010.
- 113. Kan T, Sato F, Ito T, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 2009;136:1689-700.
- 114. Kano M, Seki N, Kikkawa N, et al. miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010.
- 115. Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1downregulation in cancers. Oncogene 2008;27:6667-78.
- 116. Lee KH, Goan YG, Hsiao M, et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res 2009;315:2529-38.
- 117. Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010;11:136-46.

- 118. Wan HY, Guo LM, Liu T, et al. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 2010;9:16.
- 119. Luo H, Zhang H, Zhang Z, et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res 2009:28:82
- 120. Zhu LH, Liu T, Tang H, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J 2010.
- 121. Zhang Y, Guo J, Li D, et al. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol 2010;27:685-9.
- 122. Wang HJ, Ruan HJ, He XJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 2010;46:2295-303.
- 123. Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 2010;298:50-63.
- 124. Wu J, Qian J, Li C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010;9:1809-18.
- 125. Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 2010;394: 1047-52.
- 126. Lai KW, Koh KX, Loh M, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer 2010;46:1456-63.
- 127. Du Y, Xu Y, Ding L, et al. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 2009;44:556-61.
- 128. Hashimoto Y, Akiyama Y, Otsubo T, et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010;31:777-84.
- 129. Wada R, Akiyama Y, Hashimoto Y, et al. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 2010;127:1106-14.
- 130. Tie J, Pan Y, Zhao L, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robol receptor. PLoS Genet 2010;6.
- 131. Gao C, Zhang Z, Liu W, et al. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 2010;116: 41-9.
- 132. Cho WJ, Shin JM, Kim JS, et al. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through

direct regulation of LATS2. Mol Cells 2009;28:521-7.

- 133. Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010;70:2339-49.
- 134. Jiang Z, Guo J, Xiao B, et al. Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol 2010;45:17-23.
- 135. Tsang WP, Kwok TT. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 2009;30:953-9.
- 136. Wang P, Zou F, Zhang X, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009;69:8157-65.
- 137. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 2007;104:15472-7.
- 138. Díaz R, Silva J, García JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 2008;47:794-802.
- 139. Ng EK, Tsang WP, Ng SS, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 2009;101:699-706.
- 140. Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Biol Chem 2007:282:32582-90.
- 141. Valeri N, Gasparini P, Fabbri M, et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A 2010;107:6982-7.
- 142. Schimanski CC, Frerichs K, Rahman F, et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 2009;15:2089-96.
- 143. Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010;31:350-8.
- 144. Liu WH, Yeh SH, Lu CC, et al. MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 2009;136:683-93.
- 145. Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-17.
- 146. Fornari F, Gramantieri L, Giovannini C, et al. MiR-122/cyclin G1 interaction modu-

lates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009;69:5761-7.

- 147. Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009;28:3526-36.
- 148. Ding J, Huang S, Wu S, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 2010;12:390-9.
- 149. Wang B, Hsu SH, Majumder S, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010;29:1787-97.
- 150. Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 2008;27: 5651-61.
- 151. Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009;15:5073-81.
- 152. Wong QW, Ching AK, Chan AW, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 2010;16:867-75.
- 153. Wong QW, Lung RW, Law PT, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008;135:257-69.
- 154. Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 2008;12: 2171-6.
- 155. Ma Y, Yu S, Zhao W, et al. miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett 2010.
- 156. Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010;70:6015-25.
- 157. Lee KH, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009;9:293-301.
- 158. Li Y, Vandenboom TG 2nd, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010;70: 1486-95.
- 159. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor

development. Proc Natl Acad Sci USA 2007;104:16170-5.

- 160. Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 2010;126:73-80.
- 161. Laios A, O'Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008:7:35.
- 162. Bhattacharya R, Nicoloso M, Arvizo R, et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 2009;69:9090-5.
- 163. Fan X, Liu Y, Jiang J, et al. miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin 2010;42:318-24.
- 164. Li Z, Hu S, Wang J, Cai J, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010;119: 125-30.
- 165. Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 2010;70:1906-15.
- 166. Corney DC, Flesken-Nikitin A, Godwin AK, et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesionindependent growth. Cancer Res 2007;67: 8433-8.
- 167. Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 2009;11:1208-15.
- 168. Imam JS, Buddavarapu K, Lee-Chang JS, et al. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 2010;29:4971-9.
- 169. Chen R, Alvero AB, Silasi DA, et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 2008;27:4712-23.
- 170. Yin G, Chen R, Alvero AB, et al. TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 2010;29:3545-53.
- 171. Bendoraite A, Knouf EC, Garg KS, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol 2010;116:117-25.
- 172. Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210 links hypoxia

with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 2008;7:255-64.

- 173. Wurz K, Garcia RL, Goff BA, et al. MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 2010;49:577-84.
- 174. Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008;68:3566-72.
- 175. Sasayama T, Nishihara M, Kondoh T, et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 2009;125:1407-13.
- 176. Dews M, Fox JL, Hultine S, et al. The MycmiR-17~92 Axis Blunts TGF{beta} Signaling and Production of Multiple TGF{beta}-Dependent Antiangiogenic Factors. Cancer Res 2010;70:8233-46.
- 177. Ernst A, Campos B, Meier J, et al. Derepression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 2010;29:3411-22.
- 178. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-33.
- 179. Kim H, Huang W, Jiang X, et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 2010;107:2183-8.
- 180. Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and selfrenewal. Cancer Res 2008;68:9125-30.
- 181. Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer 2010;126: 1029-35.
- 182. Guan Y, Mizoguchi M, Yoshimoto K, et al. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 2010;16:4289-97.
- 183. Medina R, Zaidi SK, Liu CG, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 2008;68:2773-80.
- 184. Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 2009;106: 10746-51.
- 185. Würdinger T, Tannous BA, Saydam O, et

al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008;14:382-93.

- 186. Shin S, Cha HJ, Lee EM, et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol 2009;35:81-6.
- 187. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 2008;7:464-73.
- 188. Galluzzi L, Morselli E, Vitale I, et al. miR-181a and miR-630 regulate cisplatininduced cancer cell death. Cancer Res 2010;70:1793-803.
- 189. Zhu W, Shan X, Wang T, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010;127:2520-9.
- 190. Zhang H, Li M, Han Y, et al. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci 2010;55:2545-51.
- 191. Hong L, Han Y, Zhang H, et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg 2010;251:1056-63.
- 192. Chun-Zhi Z, Lei H, An-Ling Z, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010;10:367.
- 193. Bandres E, Bitarte N, Arias F, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009;15:2281-90.
- 194. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009;28:4065-74.
- 195. Borralho PM, Kren BT, Castro RE, et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009;276:6689-700.
- 196. Song B, Wang Y, Titmus MA, et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010;9:96.
- 197. Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009;361:1437-47.
- 198. Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010;70:5184-93.
- 199. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in

pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 2010;70:3606-17.

- 200. Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010;5.
- 201. Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 2009;8:1067-74.
- 202. Li Z, Hu S, Wang J, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010;119:125-30.
- 203. Nagaraja AK, Creighton CJ, Yu Z, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010;24:447-63.
- 204. Cochrane DR, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009;8:1055-66.
- 205. Shi L, Chen J, Yang J, et al. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity.

Brain Res 2010;1352:255-64.

- 206. Li Y, Li W, Yang Y, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 2009;1286:13-8.
- 207. Lu L, Katsaros D, de la Longrais IA, et al. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007;67:10117-22.
- 208. Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 2008;68:5049-58.
- 209. Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 2008;214:17-24.
- 210. Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008;105:13556-61.
- 211. Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009;125:2737-43
- 212. Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008;68:4123-32.
- 213. Lujambio A, Ropero S, Ballestar E, et al.

Noucoul

Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007;67:1424-9.

- 214. Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 2009;69:9038-46.
- 215. Balaguer F, Link A, Lozano JJ, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010;70:6609-18.
- 216. Meng F, Wehbe-Janek H, Henson R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008;27:378-86.
- 217. Saito Y, Suzuki H, Tsugawa H, et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009;28:2738-44.
- 218. Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009;113:6411-8.
- 219. Duursma AM, Kedde M, Schrier M, et al. miR-148 targets human DNMT3b protein coding region. RNA 2008;14:872-7.