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Abstract 

Accumulating experimental evidence indi-
cates that microRNAs play important roles in
various biological processes, such as cell differ-
entiation, proliferation, metabolism and apopto-
sis. In addition, several reports concluded that
altered expression of specific microRNA genes
contributes to the initiation and progression of
cancer. Here, we summarize the current knowl-
edge about aberrant expression of various
microRNAs in human solid cancers (e.g., lung,
breast, and gastric cancers), their target pro-
teins, and the relationship between their
expression and response to chemotherapies.
We also review the potential for using
microRNAs as biomarkers for the diagnosis and
cancer therapy. The development of treatment
strategies against human solid cancers based
on the profile and/or certain features of
microRNAs is promising.

What is microRNA?

MicroRNAs are noncoding, single-stranded
RNAs, 18-25 nucleotides long, and were first
reported in Caenorhabditis elegans in 1993.1

Subsequent studies led to the identification of
microRNAs in human RNA,2 as well as to the
understanding of their mechanisms of action.
Most human miRNAs are found within introns
of either protein-coding or noncoding mRNA
transcripts,3 and they do not code for any pro-
tein although they are RNA sequences.
MicroRNA genes are generally transcribed

by RNA polymerase II in the nucleus to form
pri-miRNA transcripts. These are processed
into pre-miRNAs by a microprocessor complex,
which contains the Rnase III enzyme Drosha4

and DGCR8.5 Exportin5 and a RanGTP6 trans-
port the pre-miRNAs from the nucleus to the
cytoplasm, where they are further processed by
the RNAase III enzyme Dicer.7 The mature
miRNA is retained in RISC (RNA-induced
silencing complex)8 and it is currently under-
stood that microRNAs mainly bind to the 3’
untranslated region (UTR) of their target
mRNAs. However, recent studies have reported
that microRNAs do not only bind to 3’UTR but

also to 5’UTR9,10 or open reading frame
(ORF)11,12 of the target mRNA. By binding to
the 3'UTRs, 5’UTR or ORF of target mRNAs,
microRNAs regulate the translation of proteins
from mRNA or degrade the mRNA itself.13

While microRNAs are thought to repress the
translation of target mRNAs, recent results
demonstrated that microRNAs can activate the
expression of the target genes.14 In the same
study, microRNA was reported to be essential
for translation activation under growth arrest
conditions. Regulation of translation by
microRNAs might change from repression to
activation depending on the cell cycle.
In addition, because microRNA can bind

even to mRNA that is not partially complemen-
tary,15 microRNA and mRNA do not correspond
one-to-one,16 such that one microRNA may reg-
ulate several mRNAs or one mRNA may be reg-
ulated by several microRNAs. For example, in
human gliomas, miR-34a inhibits the expres-
sion of multiple oncogenes (e.g., c-Met, Notch-
1/Notch-2 and CDK6) by binding to their 3’-
UTR and suppressing tumor growth.17 Thus,
these microRNAs potentially regulate approxi-
mately 30% of all genes encoding human pro-
teins18 and appear to achieve a wide range of
cell functions, such as cell generation, differ-
entiation, and proliferation.

Aberrant expression of
microRNAs in solid cancers

With regard to the relationship between
microRNA and cancer, the initial studies
reported that B-cell chronic lymphocytic
leukemia is associated with downregulation or
deletion of miR-15 and miR-16 genes.19 Other
studies subsequently showed that more than
half of the microRNAs were located near the
unstable DNA region, where chromosomal
deletions or amplifications associated with
cancer in large the majority of cancer cells.20

Thus, in cancer tissues, detailed profiling of
microRNA should be informative and useful for
evaluation of the cancer properties. In fact, it
is reported that the expression levels of
microRNAs vary widely depending on the can-
cer type and degree of differentiation9 and that
cancers can be even classified according to the
microRNA profile, but not the mRNA profile.21

MicroRNAs include both microRNAs that act
to inhibit cancer and microRNAs that con-
versely target tumor suppressor genes and act
like oncogenes. To date, numerous reports
have examined the aberrant expression of
microRNAs and the association between the
level of microRNA expression and prognosis in
a number of human carcinomas. Table 1 lists
the major microRNAs with reported aberrant

expression in solid cancers. To study the rela-
tionship between microRNAs and cancer, it is
important to examine not only aberrant
expressions of microRNAs in carcinomas but
also the gene targeted by these microRNAs and
to understand their overall roles in cancer. For
example, miR-21 is a typical oncogene
microRNA whose aberrant expression has
been confirmed in various cancers such as
breast cancer,22 lung cancer,23 esophageal can-
cer,24 colorectal cancer,25 pancreatic cancer,26

and hepatocellular carcinoma.27 Interestingly,
the Bcl-222 and PTEN27 genes are target genes
of miR-21, and the oncogene-like function of
miR-21 is mediated through the suppression of
such tumor suppressor genes.

Lung cancer
One major microRNA, the let-7 family, was

first reported to alter the prognosis of patients
with lung cancer.28 Oncogenes such as RAS 29)
and HMGA230 are already known as target genes
of the let-7 family. In 2008, the first microRNA-
knockout mouse was reported, the miR-17-92
knockout mouse, which exhibited hypoplasia of
the lungs and B lymphocytes.31 MiR-17-92 may
also be involved in the process of lung carcino-
genesis, and further studies are desirable. In
fact, several reports have described the relation-
ship between the expression of miR-17-92 and
lung cancer.32-35 On the other hand, the expres-
sion of microRNA was recently reported to cor-
relate with smoking.36 Based on the relationship
between smoking and lung cancer, further stud-
ies are needed to determine the relationship
between smoking and microRNA expression. It
is anticipated that such studies will allow the
design of new approaches for cancer treatment.
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Breast cancer
Breast cancer is a major cause of cancer mor-

tality in women,37 and one of the cancers most
studied in relation to microRNA. The aberrant
expression of many microRNAs has been
reported (Table 1). Several studies reported the
association between stem cells or cancer stem
cells and microRNAs, such as the let-7 family,38

miR-200c,39 and miR-30,40 in breast cancer.
Furthermore, it is interesting that the number
of studies conducted using a murine breast can-
cer model has been increasing relative to stud-
ies on other cancers. One study showed that
miR-31 can impede local invasion and suppress
metastasis from primary breast tumor in vivo
and that the expression level of miR-31 corre-
lates inversely with metastasis in human breast
cancer.41 Another study found low expression
levels for miR-126 and miR-335 in primary
human breast tumors and restoration of the
expression of these microRNAs significantly
reduced bone metastases in vivo.42

Esophageal cancer
Enzymes that contribute to the biogenesis of

microRNA in esophageal cancer were first
reported in 2006.43 However, there are few
reports that have described the relationship
between esophageal cancer and aberrant
expression of microRNA, compared with other
solid tumors (Table 1). This may be due to the
difficulty in collecting tissue samples from
patients with esophageal cancer because
esophagectomy is mostly performed in limited
number of institutions. In this regard, a recent
study using 70 tissue samples of esophageal
cancer collected from several centers in three
countries found that up-regulation of miR-21
expression and down-regulation of miR-375
expression correlated significantly with poor
prognosis.44 Further studies are needed to
explore the potential therapeutic effects of
microRNAs, such as improvement in sensitivi-
ty to radio- and chemo-therapy.

Gastric cancer
The expression of microRNA in gastric can-

cer was first reported in 2006 in a study that
used microarray analysis;45 the results showed
aberrant expression of 28 microRNAs (22 up-
regulated and 6 down-regulated). Gastric can-
cer includes various histopathological sub-
types, such as three degrees of differentiation,
mucinous, papillary and signet ring cell, and
microRNAs are expressed differentially in this
cancer according to histopathological sub-
type.45 Thus, detailed analysis based on classi-
fication of histopathological types is necessary
for proper analysis of aberrant expression of
microRNA in gastric cancer. Although the
number of studies on microRNA in gastric can-
cer is smaller than colorectal cancer and breast

cancer, reports published in 2010 indicate
increased interest in the aberrant expression
of microRNA in this type of cancer (Table 1).

Colorectal cancer
Similar to breast cancer, the expression of

microRNA, including aberrant expression, in
colorectal cancer has been the topic of several
studies (Table 1). For example, among patients
with stage II colorectal cancer, those with high
expression of miR-320 and miR-498 are consid-
ered to have better relapse-free survival than
patients with low expression.46 The same report
indicated that analysis of the expression of a
combination of several microRNAs can predict
relapse with 81% accuracy rate, suggesting the
potential of microRNA as a biomarker of recur-
rence. Another feature of colorectal cancer is
the association between the expression of
microRNAs and the p53 pathway 47-51

Hepatocellular carcinoma
Several reports have described the aberrant

expression of microRNAs in hepatocellular
carcinoma (HCC) (Table 1). The expression of
microRNA is also reported to be associated
with HBV and HCV infections52,53 which are
closely related to HCC, and the association
with hepatocarcinogenesis has been indicat-
ed.54 Reduced expression of miR-122 in a
chimpanzee model of HCV hepatitis/HCC was
reported to result in successful control of
HCC,55 and the clinical application to humans
is greatly anticipated.

Pancreatic cancer
Pancreatic cancer is one of the most malig-

nant cancers, and ranks eighth among the
causes of death worldwide.37 In addition to
searching for aberrant expression of
microRNA in pancreatic cancer (Table 1),
analysis of the clinical significance of
microRNA on early detection of cancer and the
therapeutic outcome would be desirable. In
this regard, it has been reported that profile
analysis of microRNA expression can differen-
tiate pancreatic cancer from chronic pancre-
atitis,56 which is sometimes difficult to distin-
guish from pancreatic cancer. In fact, the
expression of miR-196a-2 has already been
used as a marker for differentiating pancreat-
ic cancer from pancreatitis.57 MiR-155 is also
reportedly useful for early detection of intra-
ductal papillary mucinous neoplasm (IPMN).58

Ovarian cancer
Although there are numerous reports on the

aberrant expression of various microRNAs in
ovarian cancer (Table 1), interestingly, there
are almost no reports on miR-21, which is a
typical proto-oncogene. Several studies exam-
ined the relationship between microRNA and

sensitivity to cisplatin or paclitaxel chemother-
apy, which is often used in clinical settings.
For example, among patients with ovarian can-
cer undergoing cisplatin-based chemotherapy,
the complete responders to chemotherapy
showed significantly higher expression of let-
7i in their tumors compared with the other
patients that did not respond completely, and
ovarian cancer cells with overexpression of let-
7i were more sensitive to cisplatin than those
with low expression.59

Glioblastoma
Glioblastoma is one of the highest-grade

tumor among human intracranial tumors, and
aberrant microRNA expression in glioblastoma
has been reported in many studies (Table 1).
To improve the prognosis of patients with
glioblastoma, the development of biomarkers
for early detection of glioblastoma, for example
circulating microRNAs, is needed. This is par-
ticularly important since glioblastoma respond
well to treatment with temozolomide, an oral
alkylating agent often used for the treatment of
intracranial tumors (Table 2).

Anti-cancer therapy and
microRNA

In addition to the aforementioned studies
that identified aberrant expression of
microRNAs in various cancers, it is anticipated
that novel anticancer therapeutic strategies
will be designed in the future that are based on
microRNAs, including chemotherapeutic
agents, anti-hormone receptor agents and
radiotherapy that target specific microRNAs.
Furthermore, changes in the expression levels
of microRNAs during any such therapy, relative
to the baseline (using microarray analysis),
could be also used to predict the
sensitivity/resistance of tumors to the anti-
tumor agents as well as monitor the response
to such treatment.
Table 2-1 shows the relationship between

certain microRNAs and the response to
chemotherapy. For example, previous studies
using microRNA microarray analysis showed
down-regulation of 10 microRNAs and up-reg-
ulation of two microRNAs in chemoresistant
gastric cancer cells compared with parent
cells60 and down-regulation of two microRNAs
and up-regulation of 13 microRNAs in
chemoresistant glioblastoma cells compared
with parent cells.61 Another study found signif-
icantly low levels of let-7i expression in
chemotherapy-resistant patients.59 These stud-
ies highlight the potential application of
microRNAs to the prediction of the tumor
response to chemotherapy.
Table 2-2 also lists few microRNAs that were
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Table 1. Aberrant expression of microRNA in solid cancers.

MicroRNA Target Expression in tumor Function ref

Lung
let-7 NS Down Tumor suppressor 89
let-7 HMGA2, K-RAS Down Tumor suppressor 90
let-7 CDK6, N-RAS Down Tumor suppressor 91
miR-15a,16 CyclinD1, D2, E1 Down cell cycle arrest is induced 92
miR-17-92 HIF1α NS miR-17-92 regulates HIF1α expression under normoxia 34
miR-17-92 NS Up miR-17-92 is relation to development of B cell and lung 31
miR-21 NS Up oncogene, EGFR signaling regulates miR-21 expression 93
miR-21 NS Up miR-21 knock-out mice suppresses Tumor development 94
miR-29 DNMT3A, 3B Down Tumor suppressor 95
miR-128b EGFR NS miR-128b LOH is positive prognostic factor 96
miR-145 Mucin1 Down Tumor suppressor 97
miR-221, 222 PTEN, TIMP3 Up Oncogene 98
miR-488, 503, 647 NS NS miR expression pattern to predict recurrence 99

Breast
let-7 HRAS, HMGA2 Down Tumor suppressor 38
miR-9 CDH1 Up Oncogene 100
miR-10b RHOC Up Oncogene 101
miR-10b HOXD10 Up Oncogene 102
miR-17/20 IL-8, CK8, CXCL1 Down Tumor suppressor 103
miR-21 PDCD4 Up Oncogene 104
miR-29a TTP Up Oncogene 105
miR-30 Ubc9, ITGB3 Down Tumor suppressor 40
miR-31 F2d3, ITGA5, MMP6 etc. Down Tumor suppressor 41
miR-126, 335 SOX4, Tenascin Down Tumor suppressor 42
miR-146a,b IRAK1, TRAF6 Down Tumor suppressor 106
miR-193b uPA Down Tumor suppressor 107
miR-200family, 205 ZEB1, SIPI NS miR-200 family regulate ZEB1 and SIP1 108
miR-200c BMI1 Down Tumor suppressor 39
miR-373, 520c CD44 Up Oncogene 109
miR-661 Nectin-1, StarD10 Up Oncogene regulated by SNAI1 110

Esophagus
miR-10b KLF4 Up Oncogene 111
miR-16, 30e, 200a NS Up Oncogene 112
miR-21 PDCD4 Up Oncogene 24
miR-21, 375 NS miR-21: up, -375: Down miR-21: oncogene, miR-375: Tumor suppressor 44
miR-106b p21 Up Oncogene 113
miR-133a,b,145 FSCN1 Down Tumor suppressor 114
miR-196a ANXA1 Up Oncogene 115
miR-373 LATS2 Up Oncogene 116

Stomach
let-7g,miR-214, 433 NS miR-422: let-7, miR-422: Tumor suppressor; 117

Down miR-214: oncogene
miR-9 NF-κβ Down Tumor suppressor 118
miR-9, 433 RAB34, GRB2 Down Down-regulated in gastric cancer 119
miR-23a IL-6R Up Oncogene 120
miR-31 NS Down Down-regulated in gastric cancer 121
miR-101 EZH2, Cox2, Mcl-1, Fos Down Tumor suppressor 122
miR-126 Crk Down Tumor suppressor 123
miR-129 CDK6 Down Tumor suppressor 124
miR-129-2 SOX4 Down Tumor suppressor 125
miR-130b RUNX3 Down Tumor suppressor 126
miR-141 NS Down Tumor suppressor 127
miR-181c NOTCH, KRAS Down Tumor suppressor 128
miR-212 MeCP2 Down Tumor suppressor 129
miR-218 Robo1 Down Tumor suppressor 130
miR-218 ECOP Down Tumor suppressor 131
miR-372 LATS2 Up Oncogene 132
miR-375 PDK2, 14-3-3 Down Tumor suppressor 133
miR-421 CBX7, RBMXL Up Up-regulated in gastric cancer 134

Continued next page.
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Table 1. Continued from previous page.

Colon
miR-16 Wip1 Down Down-regulated in colon cancer 47
miR-18* KRAS Down Tumor suppressor 135
miR-21 CDC25A Up Oncogene 136
miR-34a E2F Down Tumor suppressor 137
miR-106a E2F1 Down Tumor suppressor 138
miR-107 HIF1β Down Tumor suppressor 48
miR-143 DNMT3A Down Tumor suppressor 139
miR-145 IRS1 Down Tumor suppressor 140
miR-155 MSH1, MSH2 Up Oncogene 141
miR-192 NS NS Proliferative effect of miR-192 depends on p53 50
miR-196a NS Up Oncogene 142
miR-320, 498 NS Down Tumor suppressor 46
miR-675 RB Up Oncogene 143

Liver
miR-18a ERα Up Oncogene 144
miR-21 PTEN Up Oncogene 27
miR-26a NS Down Tumor suppressor 145
miR-101 Mcl-1 Down Tumor suppressor 68
miR-122 CyclinG1 Down Tumor suppressor 146
miR-122 NS Down Tumor suppressor 147
miR-151 PhoGD1A Up Oncogene 148
miR-181b TIMP3 Up Oncogene 149
miR-193b Mcl-1 NS HCV proteins alter miR expressions 53
miR-196 Bach1 NS miR-196 inhibits HCV expression 54
miR-221 CDKN1C/p57, CDKN1B/p27 Up Oncogene 150
miR-221 Bmf Up Oncogene 151
miR-222 PPP2R2A Up Oncogene 152
miR-223 STMN1 Down Tumor suppressor 153

Pancreas
miR-21 NS Up Oncogene 154
miR-27a Sprouty2 Up Oncogene 155
miR-96 KRAS Down Tumor suppressor 156
miR-107 CDK6 Down Tumor suppressor 157
miR-146a EGFR, IRAK1, NFκβ, MTA2 Down Tumor suppressor 158
miR-155 TP53INP1 Up Oncogene 159
miR-196a-2 NS Up Oncogene 57
miR-210 EFNA3 Up Oncogene 160

Ovary
let-7i NS Tumor suppressor 59
miR-9, 223 NS miR-9: down, miR-9: Down-regulated, 161

miR-223: down miR-223: up-regulated in recurrent ovarian cancer
miR-15a, 16 Bmi-1 Down Tumor suppressor 162
miR-20a APP Up Oncogene 163
miR-27a NS Up Oncogene 164
miR-31 CEBPA, STK40, E2F2 Down Tumor suppressor 165
miR-34b, 34c NS Down Tumor suppressor 166
miR-125a ARID3B Up Oncogene 167
miR-185 Six1 Down Tumor suppressor 168
miR-199a IKKβ Down Tumor suppressor 169
miR-199a, 214 NS Up and down Twist1 regulates miRs 170
miR-200a, 200b ZEB1,2 Up up-regulated in ovarian cancer 171
miR-210 E2F3 NS miR-210 is a key regulator of hypoxia 172
miR-221, 222 CDKN1C Down Tumor suppressor 173

Glioblastoma
miR-7 EGFR Down Tumor suppressor 174
miR-10b RhoC, uPAR Up Oncogene 175
miR-17-92 Smad, etc. Up Oncogene 176
miR-17-92 CTGF Up Oncogene 177
miR-21 NS Up Oncogene 178
miR-26a PTEN, RB1, MEKK2 Up Oncogene 179
miR-34a NC Down Tumor suppressor 17
miR-128 Bmi1 Down Tumor suppressor 180
miR-153 Bcl-2, Mcl-1 Down Tumor suppressor 181
miR-196 NC Up High expression shows poorer survival. 182
miR-221, 222 p27, p57 Down Tumor suppressor 183
miR-222, 339 ICAM1 Up MiRs correlate with CTL-mediated cytolysis 184
miR-296 HGS Up miR-296 contributes to angiogenesis 185

NS; not stated 
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Table 2. microRNAs related to sensitivity of anti-cancer therapy.

MicroRNA Treatment Target Function Year Ref
2-1. MicroRNAs that are associated with response prediction
Stomach
miR15a,16 ADR, VCR, NS Increase sensitivity 2008 60

VP16, CDDP
Ovary
let-7i CDDP NS Increase sensitivity 2008 59

Glioblastoma
miR-195 Temozolomide NS Increase sensitivity 2010 61

2-2. MicorRNAs those expressions altered during a therapy
Lung
let-7b,g Radiation NS Increase sensitivity 2007 62
Several miRs Radiation Int J oncol 22 miRs expression were changed 2009 186

Breast
miR-34 Radiation NS Decrease sensitivity 2009 63

Pancreas
miR-22 Curcumin ESR1, SP1 NS 2008 187

2-3. MicroRNA that influences the sensitivity to anti-cancer therapy
Lung
miR-181a, 630 CDDP NS Increase sensitivity 2010 188
miR-181b CDDP Bcl2 Increase sensitivity 2010 189

Breast
let-7 Epi-ADM H-RAS, HMGA2 Related to tumor initiating cells 2007 38

Esophagus
miR-27a ADR, VCR, Bcl2, MRP1 Decrease sensitivity 2010 190
5-FU, CDDP
miR-296 As above Bax Decrease sensitivity 2010 191

Stomach
miR-221, 222 Radiation NS Decrease sensitivity 2010 192
miR-451 Radiation MIF Increase sensitivity 2009 193

Colon
miR-140 5-FU HDAC4 Decrease sensitivity 2009 194
miR-143 5-FU NS Increase sensitivity 2009 195
miR-215 MTX, TDX NS Decrease sensitivity 2010 196

Liver
miR-26a IFNα NS Decrease sensitivity 2009 197
miR-199a-3p ADR mTOR, c-Met Increase sensitivity 2010 198

Pancreas
miR-21 GEM NS Decrease sensitivity 2010 199
miR-21 5-FU NS Decrease sensitivity 2010 200
miR-21 GEM NS Decrease sensitivity 2009 201

Ovary
miR-27a TXL MDR1 Decrease sensitivity 2010 202
miR-100 everolimus MTOR Increase sensitivity 2010 203
miR-200c TXL TUBB3 Increase sensitivity 2009 204
Glioblastoma
miR-21 Temozolomide Bax, Bcl-2  Decrease sensitivity 2010 205
miR-21 VM-26 LRRFIP1 Decrease sensitivity 2009 206

CDDP, cisplatin; ADR, doxorubicin; VCR, vincristine; VP16, etoposide; MTX, methotrexate; TDX, thymidylate synthase inhibitor Tomudex; GEM, gemcitabine; TXL, taxol; VM-26, Teniposide; NS. not stated.

reported to show changes in their expression dur-
ing cancer treatment. For example, significant
reductions in let-7a and let-7b expression levels,
relative to the baseline levels, were noted at 8 h
after irradiation in lung cance,62 where a signifi-
cant increase in miR-34 expression was moni-
tored following irradiation-induced DNA damage63

in breast cancer tissue. The development of resist-
ance to chemotherapy is also a problem during
cancer treatment. In the cancer stem cell theory,
the pluripotent and self-replication properties of
the stem cells affect resistance to chemotherapy
38,64 while microRNAs are known to regulate stem
cell functions.65-67 Thus, microRNAs seem to affect

the stability of resistance to antitumor therapies
in cancerous tissues. In fact, several recent stud-
ies described the correlation between resistance
to anticancer drugs and expression of microRNAs
known to be involved in stem cell functions (Table
2-2). Furthermore, many of microRNAs are known
to enhance sensitivity or reduce the resistance to
anti tumor therapy. For example, the hematomas
in which miR-101 had been introduced showed
higher sensitivity to anticancer agents68 and the
expression of miR-206 correlated inversely with
that of estrogen receptor-α.69 Table 2-3 lists some
MicroRNAs known to influence the sensitivity to
anti-cancer therapy.

Regulation of microRNA

Because microRNA regulate the expression
of many mRNAs and microRNAs do not corre-
spond one-to-one to mRNA, a comprehensive
analysis is required to understand the regula-
tion of such expression. To gain a better
understanding of the overall picture of carcino-
genesis, including the function of microRNAs,
one should understand the mechanisms
involved in the regulation of microRNA expres-
sion itself. Previous studies proposed that epi-
genetic mechanisms and other proteins regu-
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late the expression of microRNAs as described
below.

Epigenetic mechanisms
Epigenetic modification means aberrant

gene expression due to DNA methylation or
histone deacetylation. DNA methylation occurs
in specific genomic areas called CpG-islands,
which are commonly present in the promoter
area of the gene.70 Methylation of CpG-island
is triggered by DNA methyltransferases
(DNMTs) and histone modifications are cat-
alyzed by histone deacetylases (HDACs) and
histone methyltransferases (HMTs). Tumor
genes are globally hypomethylated compared
with those of normal tissues,71 and methyla-
tion of CpG islands in the gene promoter area
results in inactivation of tumor suppressor
genes.70 Thus, epigenetic modifications could
be involved in carcinogenesis, in addition to
other well-defined genetic mechanisms, such
as gene mutations and loss of deficiency of
heterozygosity.
It was demonstrated recently that certain

genes, in particular those with hypermethylat-
ed promoters, require Dicer to maintain the
epigenetic status.72 As mentioned above, Dicer
is a key enzyme in microRNA biogenesis. That
is a first report that shows the correlation
between epigenetic changes of DNA and
microRNAs.
Then, Several other studies have reported

that epigenetic mechanisms regulate the
expression levels of microRNAs. For example,
the first report in 200673 showed that abnormal

methylation correlates with miR-127 expres-
sion in several cancer cells. Although miR-127
is not expressed in cancer cells, strong upreg-
ulation of this microRNA was noted after treat-
ment with chromatin-modifying drugs (which
are also DNA demethylating agents and HDAC
inhibitors). Another study showed that the
oncoprotein AML1/ETO, an acute myeloid
leukemia-associated fusion protein, induced
heterochromatic silencing of miR-223 by
recruiting DNMTs and HDAC1 activities.74

These results point to a complex epigenetic
regulation of microRNAs. Table 3-1 lists a
group of microRNAs known to be regulated by
epigenetic mechanism.
On the other hand, new evidence suggests

that microRNAs can control the expression lev-
els of DNMTs and HDACs. For example,
microRNA members of the miR-29 family
directly target DNMT3A and DNMT3B.
Enforced expression of the miR-29 family
induced reexpression of methylation-silenced
tumor suppressor genes in lung cancer cells,
which resulted in inhibition of cancer growth
in xenograft models.75 Other studies showed
that miR-1 directly targeted HDAC-4 in murine
myoblasts76 while miR449a regulated cell
growth by repressing HDAC-1 expression in
human prostate cancer cells.77 Table 3-2 lists
few microRNAs known to control epigenetic
mechanisms.
The above studies enhance our understand-

ing of aberrant epigenetic mechanisms in can-
cers and may prove useful in identifying new
targets for cancer therapy. 

Regulation by other factors
Among the various families of microRNAs,

the let-7 family, which is known to have tumor
suppressor function, is under the control of
LIN28, which is overexpressed in germ cells by
RNA-binding proteins, at the stage of Drosha
enzyme processing.78 The latter study indicat-
ed the specificity of the regulatory mechanism
of LIN28 to the let-7 family by demonstrating
the lack of any inhibitory effects on other
microRNA. Dicer, another enzyme involved in
the processing of microRNAs, also inhibits the
let-7 family and forms a negative feedback loop
with let-7 family.79 Other studies reported the
regulation of microRNAs by other transcription
factors, such as p5380 and c-myc,81 suggesting
that many factors are intricately involved in
the mechanisms that regulate microRNAs in
cancers. The number of microRNA-related reg-
ulatory factors reported to date is not very
large, but it is expected to expand exponential-
ly in the future.

MicroRNAs as biomarkers for
cancer

Although many aspects of microRNA forma-
tion in the cell remain unclear, it is becoming
evident that microRNAs are more stable in the
cells than mRNA. Accordingly, it is anticipated
that microRNAs may serve as biomarkers of
cancer better than mRNA. Historically, intrin-
sic microRNA levels in the circulation were
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Table 3. microRNAs that are regulated by epigenetic gene silencing.

MicroRNA Cancer type Target Detail Year Ref
3-1. Some microRNAs of which expression controlled by epigenetic mechanism
let-7a-3 Ovary NS let-7a-3 methylation is associated with survival 2007 207
miR-1 Liver FoxP1, MET, Overexpression in cells treated with 5- AZA 2008 208

HDAC4
miR-9-1 Breast NS Overexpression in cells treated with 5-AZA 2008 209
miR-9, 34b/c, 148a Various types oncogenes Overexpression in cells treated with 5-AZA 2008 210
miR-9, 129, 137 Colon NS Overexpression in cells treated with 5- AZA 2009 211
miR-34b, -34c Colon BTG4 miR-34b/c methylation is frequently observed in cancer cells  2008 212
miR-124a Colon CDK6 Overexpression in cells treated with 5-AZA 2007 213
miR-127 Bladder BCL6 Overexpression in cells treated with 5-AZA 2006 73
miR-129-2 Ovary SOX2 Overexpression in cells treated with epigenetic drugs 2009 214
miR-137a Colon LSD1 miR-137 methylation is specific for cancer 2010 215
miR-223 Leukemia NS AML1/ETO induced heterochromatic silencing of miR-223 2007 74
miR-370 Biliary duct MAP3K8 Overexpression in cells treated with 5-AZA 2008 216
miR-512-5p Stomach Mcl-1 Overexpression in cells treated with 5- AZA 2009 217

3-2. Some microRNAs that controlls epigenetic mechanism
miR-1 Myoblast HDAC-4 MiR-1 represses HDAC-4 2006 76

(not malignant)
miR-29 family Lung DNMT3a, 3b Enforced expression restores normal patterns 2007 75

of DNA methylation
miR-29b Leukemia DNMT3a, 3b Enforced expression restores normal patterns 2009 218

of DNA methylation
miR-148a, b Various types DNMT3b MiR-148 represses DNMT3b 2008 219
MiR-449 Prostate HDAC-1 MiR-449 directly targets HDAC-1 2009 77

5-AZA, 5-Aza-20-deoxycytidine; NS, not stated.
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found to be relatively stable against endoge-
neous RNAase.82 Subsequent studies reported
higher blood miR-195 and let-7 expression lev-
els in patients with breast cancer compared
with healthy subjects and that these expres-
sion levels fell after surgical excision of the
tumor.83 Furthermore, the expression levels of
miR-29a and miR-92a were also found to
increase with the stage of colorectal cancer,84

suggesting their potential suitability as a can-
cer screening tool.
Recent studies have reported measurement

of microRNAs in other body fluids in addition
to blood, such as feces85 and sputum.86 For
example, significantly higher expression levels
of miR-21 were found in the sputum of
patients with lung cancer compared with
healthy subjects, indicating high sensitivity
and specificity.87 On the other hand, the
expression levels of miR-125a and miR-200a in
the saliva were significantly lower in patients
with oral cancer than healthy subjects.88

Further studies are needed to design simple
and noninvasive assays that accurately meas-
ure microRNAs collected from human tissues.
Such methods will be helpful for screening of
cancer or assessment of the therapeutic
effects of anti-cancer treatment.

Future perspective 
of microRNA
As noted earlier, microRNA are expected to

play a major role in the future as biomarkers
for screening cancer, predicting response to
therapies, and assessing the effect of treat-
ment.
Progress is also anticipated in the develop-

ment of new microRNA-based anti-cancer
therapies. Such therapies could be designed to
restrict cancer growth by applying the mRNA
regulatory function of microRNA to inhibit
oncogenes or activate tumor suppressor genes.
Alternatively, new therapies could be designed
based on the finding of increased potency of
standard chemotherapies when combined with
microRNAs.
We are only just beginning to understand

microRNAs and their hidden potential.
Worldwide research on microRNAs, including
clinical application, is currently underway.
Treatment strategies against solid cancers
based on profile or features of microRNAs are
expected to be developed in the near future. 
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