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A Physical Origin for Functional Domain Structure in Nucleic Acids
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WayYNE Dawson*t1, Kazuo Suzuki* aND KENJT YAMAMOTOT

Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan

(Received on 14 July 2000, Accepted in revised form on 3 August 2001)

A global strategy for estimating the entropy of long sequences of RNA is proposed to help
improve the predictive capacity of RNA secondary structure dynamic programming algorithm
(DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects
that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary
structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS)
strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain
model to introduce both local and global contributions to the entropy of a given secondary
structure. These entropic contributions are primarily a function of the persistence length of
the RNA. Limits on the domain size are strongly suggested by this model and these limits
are a function of both the length and the percentage of bp enclosed within a given domain.
The model generalizes the penalties found in the NNSS algorithms. The approach considers
the importance of flexibility in the folding and stability of RNA by considering the role of the
persistence length in a biopolymer structure. The theory also suggests that molecular machin-
ery may also take advantage of this global entropic effect to bring about catalytic effects. The
applications can also be extended to protein structure calculations with some additional
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considerations.

1. Introduction

For long RNA sequences (more than 1000 nu-
cleotides (nt)), the dynamic programming algo-
rithm (DPA) designed to fit RNA secondary
structure using free energy (FE) minimization
strategies (Nussinov & Jacobson, 1980) often fails
to reflect the experimentally known folding and
thermodynamic distribution of RNA secondary
structure. The DPA strategy relies on the as-
sumption that when a base pair (BP) is formed,
the enthalpic and entropic contributions are re-

i Author to whom correspondence should be addressed.
E-mail: dawson@nih.go.jp

0022-5193/01/230359 + 28 $35.00/0

© 2001 Academic Press

stricted to the structural context in the immediate
vicinity of the BP and when a secondary struc-
ture feature such as a loop is encountered, the free
segment region (or regions) are evaluated via an
entropy look up table that is independent of
where in that given secondary structure in which
such a penalty is applied (McCaskill, 1990; Zuker
& Stiegler, 1981). In effect, the strategy considers
only the nearest neighbor in the context of the
evaluations, and cannot “see” where the nearest
neighbor is in the context of the entire secondary
structure. We therefore call this approach a
nearest-neighbor secondary structure (NNSS)
strategy.
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Significant discrepancies in NNSS structure
prediction often begin to emerge when a pre-
dicted domain size (defined in Section 2.1) ex-
ceeds 100 nt in length. The problem appears to be
a function of both the size and the number of BPs
that encompass the domain.

Naturally, because RNA folds from the 5 end
toward the 3’ end, some of this discrepancy is
probably due to the non-equilibrium conditions
under which the sequence is formed (Brion &
Westhof, 1997; Tinoco & Bustamante, 1999;
Nussinov et al., 1982; Mironov et al., 1985).

Notwithstanding, predictions of short se-
quences of RNA yield reasonable results in most
cases and appeals to non-equilibrium conditions
are rarely sought. Likewise, when the secondary
structure has highly conserved regions, short
stems, and only yields small hierarchies of
secondary structure, the NNSS predictions also
come out fairly well. Again, equilibrium thermo-
dynamics is sufficient for the job. Yet, as the
sequences become significantly longer than
100 nt, there is an increasingly stronger
divergence between the experimentally and theo-
retically predicted “best guess”. Still, if the se-
quence is windowed in the “right way”, one can
sometimes coerce a reasonably good secondary
structure prediction out of the NINSS strategies.
Likewise, if there is existing experimental evid-
ence for the bona fide structure (NMR spectro-
scopy, X-ray crystallography, RNase digestion,
comparative sequence alignment, etc.), a reason-
able approximation of that structure can usually
be ferreted out of the long list of suboptimal
structures (often on the order of hundreds).
Hence, some aspects of the free energy estimation
using equilibrium thermodynamics are clearly cor-
rect when the example set, the suboptimal struc-
tures, or the proper windowing can be discovered.

However, windowing does not explain why
there are limits to the complexity or the length of
a functional domain, what those limits could be,
or how those limits might influence the formation
of RNA functional domains. Neither does it ex-
plain why so much of the genetic repertoire is so
skillfully self-assembled under extreme (and con-
sequently inefficient) non-equilibrium conditions.
Finally, if our desire is to predict an unknown
structure of RNA, searching through a long list of
suboptimal structures is of little use.

It is our proposal here that the major problem
is not equilibrium thermodynamics. Rather, it is
the model that is used for estimating the entropy.
As large complex hierarchal secondary structures
form, extensive order is introduced. NNSS algo-
rithms do not account for this global effect
because (as their name implies), they only take
into account effects that occur in the immediate
(nearest neighbor) vicinity of a given BP in a
secondary structure plot.

This new strategy relies heavily on terminology
originally developed in polymer science (Doi
& Edwards, 1986; Grosberg & Khokhlov, 1994;
Flory, 1953; James & Guth, 1947). However,
we have applied these concepts from a different
perspective than what is brought out in the
literature, including works devoted to the bio-
sciences. This work bears some resemblance to
earlier work in loop weighting functions
(Scheffler et al., 1970) and also parallels a recently
developed methodology in protein structure
calculations known as the Gaussian polymer
network (GPN) model (Lustig et al., 1998; Keskin
et al., 2000; Debe & Goddard, 1999). In addition,
Frederic et al., 1996) have also developed a
related approach on 3-D structures for the ends
of the sequence. The term “network” although
mathematically correct seems a bit obtuse for our
needs. Flory referred to the effect we report here
as a kind of “cross-linking” (Flory, 1953, 1956,
1976). However, the term “cross-linking” is usu-
ally associated with covalent bonding. Since the
bonds that form in RNA folding are of a Van der
Waals nature (stacking), this also creates some
confusion. Another possibility is “hairpin folding
entropy” (E. Westhof, private comm.). This is
a powerful visualization of the concept, but any
appeal to the structure forces us to speak of
individual BPs or “cross-links”. Therefore, al-
though we find problems with all terminologies
so far rendered, for the time being, we will use the
terms “cross-link” (cl) and cross-linking entropy
(CLE). As we will show, the CLE is general
enough to describe the folding of any polymer
into a secondary structure irrespective of the type
of chemical bond.

This work is written in two parts. In Part I, we
develop the strategy for estimating the global
entropy caused by folding a sequence of RNA
into its corresponding secondary structure, and
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in Part II, we develop and apply these concepts
to RNA secondary structure prediction. In the
process, we will show that double strand RNA
(dsRNA) and single strand RNA (ssRNA) are
different particularly if the enclosed RNA se-
quence is quite long. Overall, this work explores
the role and extent that equilibrium thermo-
dynamics plays in the stability and formation of
functional domains of RNA secondary structure.
We also show that this strategy offers a surpris-
ingly powerful means for predicting the behavior
of secondary structure in long RNA sequences.

2. Theory and Calculation Methods
2.1 SECONDARY STRUCTURE DEFINITIONS

General definitions of secondary structure can
be found in the literature (Zuker, 1998), and some
clear visual descriptions can be found in (Comay
et al., 1984). These definitions are restricted to
linear single stranded sequences of RNA (ssRNA)
and DNA (ssDNA).

Let the index i identify the position of a nucleo-
tide in a nucleic acid sequence and let the ordered
pair (i, j) express a bp (BP) in that sequence (with
i <j). Then secondary structure is expressed by
the following rules:§

o {0 =i&&j =) (" #i&&) # )}
* V(I,j)el,)) =i<i <j <]

S e ' <i=j<i
o V(L )EGH =<, . .
'>j=j>]

These rules result in a hierarchal ordering of the
structures where no pseudoknots or triple helices
are allowed. Secondary structure is usually
divided into stems (<), loops (), bulges (%),
internal loops (.#), branch points (7”), and multi-
branch loops (MBL) (Lyngsg, 1999; Studnicka
et al., 1978; Zuker et al., 1998).

To develop and describe the issues discussed
in this work, some additional definitions are
required.

§The mathematical symbols used here are defined as
follows: | = “such that”; | = “OR”; && = “AND”; V = “for
any”’; = = “implies”; and (i',j') € (i,j) indicates the set of
ordered pairs (i',j) which are contained in the secondary
structure bounded by (i,j) (Where i’ <’ is implied).

Definition 1 (Domain boundary). For a specified
secondary structure (S) containing the ordered
pairs {(7',j')}, suppose (i,j) denotes a domain
boundary of secondary structure. Then for any
ordered pair (i',j)eS with i’ #i and j #j, the
following conditions are satisfied:

e I <i=j <li,
V(T J )¢, j) =

i'>j=j>]
V@, j)e(i,j)=j—i>max{j —i}.

In short, no ordered pair (7,j)eS for which
i"<i or i'>j can simultaneously satisfy
(i,j)e(i,j)if (i, j) denotes a domain boundary of
secondary structure S. Further, the BP (i, j) and
(k, 1) (with i &&j < k && l) form two separate
domains if and only if both (i, j) and (k, ) satisfy
the definition of a domain boundary individually.

Definition 2 (Domain). If (i,j) defines a domain
boundary, then a domain consists of all (i, j’) that
satisfy

{0 ) € @)}

Figure 1 shows a schematic example of some
secondary structure in which the domain bound-
aries are indicated by d(domain k) where k (in this
example) is an integer between 1 and 4. The
domains represent the secondary structure
enclosed by the domain boundaries. Hence, a
domain represents the collection of &, 4, .7,
A, and 7" structures that form a hierarchy of
secondary structure above the domain boundary
(i, ).

Domains defined by way of Definition 1 may
differ from the common biological descriptions of
domains that generally consist of large secondary
structural features. In the definition given here,
we must assign any structure that satisfies Defini-
tion 1 the title “domain” irrespective of its size.
To distinguish between these definitions, the
biological (or more common) designation for
“domain” will be numbered using Roman nu-
merals, and domains according to Definition
1 will be numbered using Arabic numerals.

We also must distinguish between different
types of multibranch loops (MBLs). These MBLs
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f(domain 2)

d(domain 1)

c(domain 4)

F1G. 1. A schematic example of secondary structure
showing the principle multibranch loop (pMBL), internal
multibranch loops (iMBL), and domain boundaries [d(do-
main k): the semi-circle at the base of the stems along the
pMBL, where in this case k = 1---4]. A domain consists of
the secondary structure contained within the regions en-
closed by the domain boundaries (d(domain k)). Subdomains
would include such points as the closing BP of the iMBLs,
internal loops, etc.

have also been called a “bifurcation loop” in the
literature (Zuker & Stiegler, 1981).

Definition 3 (Internal multibranch loop (iM BL)).
An iMBL consists of a sequence fragment which
exhibits multiple branching points but is closed
atits 5" and 3’ ends by a stem consisting of at least
one BP. Figure 1 shows an iMBL in three differ-
ent locations.

Definition 4 (Subdomain). Any subsequence that
forms secondary structure and that is contained
within a specified domain.

In this work, we will restrict our discussion of
a subdomain (k', I') to secondary structure that is
bounded at its 5" and 3’ ends by either a stem or
an iMBL.

Definition 5 (Principal multibranch  loop
(pMBL)). A pMBL runs from the 5 end to the
3" end of the sequence and represents the effective
length of sequence that results from connecting
the gaps formed at the domain boundaries with
any free segments that join those domains.

The pMBL in Fig. 1 is represented by the light
gray semi-circle and consist of the unhybridized

bases from the 5’ to the 3’ end and the gaps
formed by the circled regions at d(domain k)
There are no pMBLs in a circular RNA or DNA
sequence and there can only be one pMBL in
a given linear sequence. The pMBL resembles the
standard definitions for MBLs in (Zuker et al.,
1998); however, because the 5" and 3’ ends are not
necessarily closed, this structure is different from
an iMBL. It has also been called an “open struc-
ture” (Williams & Tinoco, 1986).

Definition 6 (M BL hierarchal complexity (HC)).
In a tree diagram of secondary structure, the high-
est node (indexed with respect to the MBLs) that
forms branching points (¥”) in a given domain: for
a pMBL, HC = 0 and for all iMBLs, HC > 1.

The HC index corresponds to the level or re-
cursion required to search a domain of secondary
structure. In Fig. 1, domains 1-4 have the follow-
ing HC: 1, 0, 2, and 0, respectively.

Definition 7 (cross-link (cl)). Any kind of chem-
ical bond that joins two monomers together
whether they be within the same polymer chain
or between two different polymer chains.

In this work, we are mostly concerned with
intra-chain cross-links or BPs. Inter-chain cross-
linking is of interest with respect to dsRNA/
dsDNA and RNA/DNA binding proteins.

Definition 8 (base pair density (BPD)). In a se-
quence of length N, the ratio between the number
of observed BPs (cross-links) and N/2, which is
the maximum conceivable number of BPs
allowed for a sequence of length N that only
forms secondary structure.

In principle, only sequences like Gy/,Cy/, (N/2
large) can achieve a BPD approaching 1.

2.2. REAL POLYMERS AND THE GAUSSIAN
POLYMER CHAIN

2.2.1. Length Scales in the GPC:
the Persistence Length

A polymer consists of individual segments of
monomers or “mers”. These monomers have an
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average separation b between successive seg-
ments and the polymer consists of N such “mers”
in total. A sequence of RNA contains different
monomers: adenine (A), cytosine (C), guanine (G),
and uracil (U). Although these represent different
monomers, the structure and properties are
similar enough such that, in first approximation,
the details of their individual properties can be
neglected.

In the Gaussian polymer chain (GPC) approxi-
mation of a real polymer, the chemical concept
of a monomer shifts to a description in terms of
the number of “links” and the distance between
each “link”: the persistence length (Grosberg &
Khokhlov, 1997). Persistence length expresses the
rigidness of a polymer chain. For example, a steel
pipe will “persist” over a much longer distance
than a segment of rubber hose of equivalent size
and shape (Hagerman, 1997).

The persistence length reflects the distance be-
tween “links” on the GPC and does not necessar-
ily equal the distance between actual chemical
monomers (or “mers”) on the chain.

Figure 2 shows a polymer in which the mono-
mers are expressed by a sawtooth-like pattern
where each “mer” is located at the tip of the
sawtooth. Chemical bonds join some of these
monomers together (the thin lines) folding the
monomer into a hairpin. The GPC approxima-
tion of this chemical model is shown by the large

FIG. 2. An example of a polymer where the persistence
length is longer than the distance between the individual
monomers. The “mers” are located at the joints of the
sawtooth-like pattern in the figure. The “links” of the GPC
approximation consist of the gray bars with the hemisphere
at their respective centers. The sequence is folded into a hair-
pin in which the chemical bonds between the monomers are
indicated by the thin black lines. The final structure appears
quite inflexible to further folding.

gray bars capped with the hemispheric balls at
the respective centers of the individual bars.
Figure 2 also demonstrates a case where the
persistence length (or the distance between
“links”) is longer than the distance between the
individual chemical “mers” in the polymer, the
persistence length is about 5.5 “mers” per “link”.

In Fig. 3, a very different polymer is shown in
which the chemical “mers” (the large circles) are
separated by very flexible connecting segments.
Chemical bonds also join some of the monomers
together folding the sequence into a hairpin (the
thick black bars joining the circles). To make
such a highly flexible segment as seen in Fig. 3,
there must be a very large number of “links”
joining these “mers”. Hence, in Fig. 3, the persist-
ence length is very short and the number of
“links” is very large.

For a polymer chain of length (L), the relation-
ship between the number of “mers” (N) and the

number of “links” (N) is
L = Nb = Nb, (1)

where b is the distance between individual “mers”
in a real polymer, and b is the persistence length
or the distance between the “links” in the GPC
approximation of the polymer chain. We define
the parameter ¢ as the persistence ratio (Gros-
berg & Khokhlov, 1994) such that

N=N/¢ and b =¢b. )

FIG. 3. An example of a polymer where the persistence
length is shorter than the distance between the individual
monomers. The “mers” are indicated by the large white
circles and the connections between the “mers” are indicated
by the thin gray flexible lines that connect the monomers
together. This sequence is also folded into a hairpin where
the chemical bonds are indicated by the thick black bars.
Although this polymer is folded into a hairpin, the structure
appears quite flexible to further folding compared to Fig. 2.
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Figure 2 expresses the case where b>b(¢&>1)
and Fig. 3 shows the case where b < b (¢ < 1).

In the greater literature of statistical mechan-
ics, the persistence ratio is analogous to such
parameters as the correlation length in the Ising
model and the coherence length in superconduc-
tivity (Plischke & Bergersen, 1994). Hence,
& measures the distance between different units in
a given system where the interaction between
such units can be treated as though the units
behave independently. In polymer science, these
units are the “links”.

Two important points must be stressed here.
First, it can be seen in Fig. 2 that the bonding of
the polymer into a hairpin makes that structure
rigid and very little further folding is conceivable
in this structure. On the other hand, the structure
in Fig. 3 is still very flexible and can be folded
with only a small amount of resistance. Hence,
there is an intuitive higher level of persistence
length that can be envisioned in these folded
structures. The structure in Fig. 2 is extremely
rigid and has a persistence length that is roughly
a function of L, whereas the structure in
Fig. 3 remains flexible with a persistence length
that is roughly a function of b (the monomer
separation distance).

Second, the value of £ need not be assumed to
be a constant (Hagerman, 1997). The context of
the structure is likely to influence the value of ¢&:
the type of monomer, the type and arrangement
of the chemical bonds in the structure, the tem-
perature, etc. Figure 4 shows a case of a mixed

FIG. 4. An example of a polymer which has a mixed
persistence length that combines the features of Figs 2 and 3.
The stem of the polymer exhibits the same persistence length
as in Fig. 2. However, at the point of the hairpin, the
sequence is tightly folded such that only one “mer” occupies
the hairpin resembling the structure in Fig. 3. Hence, at the
base of the hairpin, the molecule shows far more flexibility
than in the stem region.

polymer where the loop of the hairpin has a shor-
ter persistence length than the stem (cf., Fig. 2).
The persistence ratio in the coil state (£.) and the
folded state (&) are also likely to be different due
o the presence of helical stacking (AU, GC, etc.),
Mg?* receptor binding, electrostatic effects and
hydrogen bonding. However, to evaluate the
model in Parts I and II, we will assume that ¢ is
constant under all experimental conditions. Pre-
sumably, there are at least some structures of
RNA where this approximation is reasonable.

2.2.2. Statistical Root Mean Separation Distance
of a GPC: the Coil State

For any polymer chain composed of a single
monomer, the observed elastic effect is almost
entirely due to entropy. Changes in the entropy
of a polymer chain are caused by a loss of confor-
mational degrees of freedom. A polymer chain
stretched out to its full extent has only one con-
figuration available to it, whereas a free chain can
assume many configurations (Grosberg & Khok-
hlov, 1997). Hence, the folded chain has a higher
entropy than the extended chain. Similarly, if the
chain is compressed, less configurations are avail-
able to the chain and again, the entropy must
decrease. Since entropy always tends toward
a maximum, the randomly folded configuration
of the polymer chain will be the preferred state in
thermodynamic equilibrium unless external for-
ces are applied to the structure. This is the origin
of the elastic effect in a polymer chain and this
equilibrium state is known as the “coil state”
which we will denote by “c”.

From polymer science theory (Appendices
B and C), the equilibrium separation between the
ends of an ideal polymer chain is

- 7\ 1/2
rC=R=b<2yTN> , (3)

where y is an excluded volume correction for the
GPC (Appendix C), b is the persistence length
and N is the number of “links” in the GPC (see
Section 2.2.1). The value of R represents the max-
imum entropy for an ideal polymer chain where
there are no chemical bonding interactions be-
tween “mers” except for the bonds that link the
polymer chain together.
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By the central limit theorem (Feller, 1971) that
yields eqn (3), it follows that for any two bases (i
and j ) at any position on the GPC, the root mean
equilibrium separation distance (R;;) will be

/2 -\ 1/2
R;;=b (%) (coil state), 4)

where N;j = (j— i+ 1)(Grosberg & Khokhlov,
1997) and the tilde notation (although cumber-
some), is meant to emphasize that we are index-
ing the “links” and not the “mers”. Hence, eqn (3)
applies both to the chain as a whole (where i=1
and j = N) and to a particular segment within the
chain (from 7 and J).

2.2.3. Bound Nucleic Acid Chains and the
Stacking Gap: the Folded State

In a real nucleic acid, there are stacking ef-
fects9 due to AU, GC, and GU binding, as well as
some other non-Watson Crick pairs (Burkard
et al., 1999). Stacking causes the separation be-
tween nucleotides to change from the equilibrium
value of R to a value r, which represents the
distance between the BPs that form in a folded
RNA or DNA sequence. The distance between
the BPs (AU, GC, and GU) is in the same order
as the bond lengths between adjacent nucleic
acids on the chain. Therefore, for convenience, we
define r, (the “folded state”) in terms of the
monomer bond length

ry = Ab (stacking gap), (5)

where 4 is the stacking parameter (Section 3.1.1).

2.3. THE ENTROPY OF FOLDING FOR A GAUSSIAN
POLYMER CHAIN

A brief description of the equilibrium thermo-
dynamics of reversible reactions in polymer
chains and a derivation of the equations related
to the Gaussian polymer chain (GPC) model can

4/ Note: it is not actually the hydrogen bonding per se, but
the stacking interaction (involving a group of consecutive
H-bonded BPs) that is the major contribution to the stabil-
ity and formation of BPs in nucleic acid sequences (Searle
& Williams, 1993).

be found in Appendices A-D. In this section,
we develop the conceptual framework of the
GPC model and the method for calculating the
CLE for a domain in terms of a given secondary
structure.

2.3.1. A Conceptual Model of Cross-linking

As a hypothetical experiment, let us imagine
that the monomer pairing interactions can be
turned off at our command (with all other para-
meters such as b, N, etc. held constant). _

Suppose we start with a polymer of N links
where all the bonds are turned off [no cross-
linking present: Fig. 5(a)]. Such a sequence would
resemble a neutral polymer and tend to behave
like a GPC with an equilibrium separation dis-
tance R 45 [eqn (3)]. Moreover, at any part of the
sequence, the equilibrium separation distance
between “link” 7 and “link” j will tend to be
R [eqn (4)]

Now suppose that we turn on a “cross-link” at
position AB and allow the system to achieve
thermodynamic equilibrium [Fig. 5(b)]. A single
“cross-link” closes part of the sequence forming
a loop and forcing a change of state: R,z —r 3
[Fig. 5(b)]. A “price” must be paid for this (call
it AS 4p).

Suppose further that we turn on a second
“cross-link” at position CD and again allow the
system to equilibrate [Fig. 5(c)]. Position AB
(and r 4p) has no direct influence on position CD
(or r¢p) (Poland & Scheraga, 1966). Note that we
have added specific correlations between C and
D that were not present before and have intro-
duced greater “order” to the structure as a conse-
quence. Therefore, we must pay another “price”
to form this bond: AS¢p. The cross-linking en-
tropy contribution will now be the sum of the
entropy closing the loop at AB and the entropy
closing the loop at CD.

It follows that if we turn on yet another “cross-
link” at position EF [Fig. 5(c)], we must also
“pay” for that with a cost ASgr. The total “cost”
required to maintain the GPC in the configura-
tion shown in Fig. 5(d) will be AS,.. = AS s +
AScp + ASgr (neglecting minor inter-link cor-
relation effects which will be examined in Part II).

At this point, some comment is needed on the
additive properties of the entropy.
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FIG. 5. The origin of the cross-linking entropy. (a) A model polymer chain of length Nb (see text) and end-to-end separation
(AB) is shown with an equilibrium (end-to-end) separation distance R, . The arrow is drawn to emphasize that the
measurement is the displacement between points AB. (b) The polymer chain is now bound at position AB on the chain (via
a chemical bond, for example). Upon binding the polymer chain at AB, the chain loses N, g degrees of freedom. Therefore

(using (47—

Appendix B), a force f(r 45) must be applied at AB to maintain the structure in a closed loop. (c) A second position

on the polymer chain is now bound at position CD. The chain loses an additional N, degrees of freedom, and a force f(r¢p)
must be applied at CD to maintain the structure in a closed loop. (d) A third bond is formed at position EF. The chain loses yet
an additional N gr degrees of freedom, and a force f(rgr) must be applied to keep the loop closed at EF. An integration of these
forces (using eqn (A.3)—Appendix A) will yield the entropy. (A total of N degrees of freedom exist in an N independent

particle system.)

At one extreme is the “floppy” chain (Fig. 3)
where many “links” comprise a single “mer”. In
other words, the distance between the chemical
bonds (formed by the “mers”) is far compared
with the distance between the “links”. Since cor-
relation effects vanish exponentially as a function
of the persistence length, and these correlation
effects are a function of 1/N (Grosberg & Khok-
hlov, 1994) (note the “link” notation), it should be
clear that the influence between nearest neigh-
boring “mers” is negligible.

At the other extreme is the “stiff” chain (Fig. 2)
where the “links” are composed of many “mers”.
Again, the functional unit is the “link” which is
equal to the persistence length. The “mers” re-
spond as a single unit (forming a particular
“link”) and the entropy must be evaluated in
terms of the “links” rather than the “mers”.
Therefore, at the level of the nearest-neighboring
chemical monomers on the chain the correlations
are already accounted for collectively via the per-
sistence length. Since the links are long and
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“stiff”, the influence of chemical bonding on such
large structures is again small, and we can treat
the nearest-neighboring “links” as effectively in-
dependent in first approximation.

Moreover, in considering the influence of
a cross-link at (E,F) on the formation of the
cross-link at (C, D), one should not ignore the rest
of the chain which will try to maximize its en-
tropy in the context of the distortions introduced
by the cross-links. The transition between
Fig. 5(c) and (d) emphasizes the fact that a multi-
tude of configurations are possible for a GPC:
none of which need to have any influence on the
formation of a neighboring state. It is noted that
the binding of a GPC is not restricted by the
natural physical constraints usually found in real
materials. However, extreme contortions are
highly improbable and do not represent any sig-
nificant fraction of the macrostate. Finally, this is
an approximation which is likely to have limits
due to the sub-additivity of entropy theorem
(E. Lieb, private comm.). Nevertheless, nearest-
neighbor secondary structure algorithms already
rely on this assumed additivity with no correc-
tions for correlation. The success of such methods
already indicates that the correlation effects are
second-order corrections in nucleic acid systems.
Indeed, we will even examine this matter in Part
II of this work and show that inter-link correla-
tion effects only introduces modest changes in the
results.

If the structure in Fig. 5(d) also represents
the most thermodynamically probable state of
the system, then when all the bonds are turned off
the sequence will unfold to its equilibrium separ-
ation distance R; ;. Likewise, if all the bonds are
turned on again (at the same time) and the system
is allowed to equilibrate, then the polymer will
fold back to its original native structure
[Fig. 5(d)]: assuming the process is entirely re-
versible. An approximation of this effect in a real
polymer can be achieved by denaturing and re-
naturing nucleic acid sequences (Brion et al.,
1997; Pan & Woodson, 1999). However, a variety
of Van der Waals interactions still remain even in
highly denaturing conditions which result in de-
viations from this idealized model. The current
description can be considered the theoretical
state of a nucleic acid in an “ideal denaturing
solvent”.

The diagrams in Fig. 5 represent a conceptual
construct to help in understanding the cross-link-
ing entropy effect and should not be used to
understand the entropy of the reaction intermedi-
ates. The hypothetical experiment resembles
more of a process akin to Maxwell’s daemon
because we have manipulated which bonds are
turned on and when. To properly express the
reaction intermediates, we need detailed config-
uration information about the particular paths in
Fig. 5. In thermodynamic equilibrium, the en-
tropy of a reversible reaction is path independent;
hence we only need to know the initial and final
states of the system and then sum up the indi-
vidual contributions with some consideration
taken for the degree of correlation.

2.3.2. The Entropy of Folding for a Single
Cross-link

In the GPC model (Appendices B through D),
the entropy is expressed by the root mean separ-
ation distance r; ; between the BP i and j, where
r; ; represents a state of thermodynamic equilib-
rium but need not be the equilibrium separation
distance R; ;. (Note: here we are using the “mer”
indices i and j.) The change in the entropy of the
GPC as a function of r; ; is

AS(r;, j) = (S(ri.;) — So)

_kB{ln(Cl,J)+2V1n<5> 2Ni,j<5> },

(6)

where S, is a reference entropy (Appendix B),
S(r;,;) is the entropy of the GPC for an end-
to-end displacement r;; between base i and
base j, kg is the Boltzmann constant (about
0.002 kcalmol "' K~ ') and C7 ; is a constant as-
sociated with normalization of the probability
density function (Appendix C).

It is noted that full thermodynamic reversibil-
ity (Appendix A) has only been shown for some
nucleic acid sequences such as group I introns
(Pan & Woodson, 1999) or special conditions of
tRNA (Brion et al.,, 1997). In Part 1I, a kinetic
model is developed which is able to address this
issue. Here we must assume that the reactions are
reversible in this system. Given so, the reference
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state entropy (So) in eqn (6) is cancelled out by
measuring two states of the system. For these two
states, we choose the statistical mean for the
end-to-end separation of the Gaussian polymer
chain corrected for the excluded volume (R;, ;) as
one state (Appendix C), and a hybridized or
folded structure (r,) for the other (Section 2.2.3).
The state r, is well defined because the “stacking”
locks the chain into a fixed end-to-end separation
that is maintained over a sufficiently long time
scale that thermodynamic averaging is permitted.

Equation (6) predicts that the change in en-
tropy due to unfolding (e.g. breaking the hydro-
gen bonds between a BP) consists of the
transition 1, — R; ;:

e Ri
ASlf’j = AS(R;,j) — AS(ry) = 2ykg 1n< rfj>

3k
2N, ;b*

(RZj — r7), (7)

where f — ¢ denotes a transition from the “folded
state” to the “coil state” (Section 2.2).

It must be recalled at this point that the “links”
in the GPC are not necessarily the same as the
separation between the “mers” (recall that i and
j represent the monomer positions, not the “link”
positions). If the environment resembles Fig. 3
(b < b), then eqn (7) can be utilized without any
adjustments because each bond functions as
a discrete unit. However, if the environment re-
sembles Fig. 2 (b > b), then the bonds are acting
collectively and we must weight the contribution
from each bond accordingly to avoid overestima-
ting the number of degrees of freedom in the
system. Figure 2 suggests that a sensible approxi-
mation would be to average the entropic contri-
bution from the “mers” over the persistence
length b (Fig. 2: where the overlapping bonding
contributions from the “mers” are indicated by
the thin lines that intersect the gray bars at right
angles and the weighted contribution from these
monomer bonds is represented by the hemis-
pheric balls at the center of the gray bars). For
& > 1, the weighted entropic contribution of (i, j)
is the sum of the bond formed at (i, j) plus the
neighboring bonds within the same “link” of the
sequence averaged over the persistence length.

Hence, the weight function (O(&)) for the entropy
of a single bond at (i, j) is roughly

1, ¢&<l1,
e &é=1

Equation (8) is discontinuous at ¢ = 1 which is (at
best) true for a genuine GPC where the joints are
connected by infinitely small springs whose flexibil-
ity even permits contortions that are impossible for
real molecular bonds. The essential properties of
the weight function are ¢ <1 =0 ~1 and ¢ >1
= O ocl1/¢. The function O(&) =1/(1 +¢) roughly
satisfies this and is continuous; however, it has the
greatest error in the range surrounding & ~ 1.

Substituting eqn (5) into eqn (7) and including
corrections for the persistence length [eqn (8)],
the estimated entropic contribution of “mer”
i (associated with a “link” encompassing point i),
and “mer” j (associated with a “link” encompass-
ing point j) will be

0 = { (8)

<AS£;C> = 7kpO() <1n(lei,j) -1+ w;]“)
_ 29
V= 352 ©)

This represents the weighted contribution of (i, j)
to the cross-linking entropy.

If £ > 1, then the primary extensive effect on
the entropy appears in the logarithmic term
which increases as a function of the sequence
length and, for ¢ < N; ;, the dominant contribu-
tion to eqn (9) will be the logarithmic term

(AST7) = kgyO(O{In(Ny,j) + In(2y¢/34%)},
(10)

which closely resembles the Jacobson & Stock-
mayer’s (1950) equation. Moreover, the cross-
linking entropy becomes negligible for large
¢ (lim;_, ,AS = 0). The R? contribution in eqn (9)
reduces to a constant which is independent of
N and the contribution to the entropy due to
r; vanishes at the rate of 1/EN; ;.

On the other hand, if ¢ <1, the dominant
contribution will be from the 1/y/N; ; term

AST7¢S ~ k 34 11
< i,j > B 2£N ) ( )
LJ
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because lim;_, +¢ (|In(¢)|/(1/£)) = 0. Since 4 is pro-
portional to the end-to-end distance of the
enclosed polymer chain, the result is exactly
the stretching term in a GPC (Grosberg &
Khokhlov, 1994). The entropy is positive because
this represents a situation where the polymer is
actually stretched between the stacked monomers
across the stacking gap [4b > R; ;: where (i, )
closes the loop in Fig. 4].

Equation (9) also has a minimum where
AS - 0 when Ab - R; ; (i.e. N; j = 1/i). This has
little bearing on the current work except that the
binding of a protein to the major grove or loop
regions of the A-RNA helix (Draper, 1999) and
the intercalation of a metal ion or a water mol-
ecule into a loop or a bulge of the RNA structure
(Hermann & Patel, 1999; Holbrook & Kim,
1997) might take advantage of this feature of
polymer physics to enhance its binding
properties.

This decomposition of the “link” into a “mer”
by “mer” average does imply that a particular
stem length (Lg.,,) formed by a given “link” could
be either longer (L., > &) or shorter (Lgen, < &)
than an integral “link” distance (for £ > 1). In
a final model, some accounting is of considerable
relevance. However, for Lg,, < &, the stems
would turn out to be quite “flimsy” since the
corresponding enthalpic contribution is also lost.
Likewise, for Lg,,, > &, the stems would be quite
“stiff” due to the presence of additional enthalpic
terms. Hence, if £ becomes too large, short loops
will be eliminated quickly from consideration due
to the “lack of funds” (i.e. enthalpy) needed
to maintain them. Averaging is merely used to
estimate the CLE contribution. We also re-
iterate that ¢ is probably not a constant over an
entire sequence and independent of the choice
of state (coil/native) as we assume in this simple
model.

2.3.3. Cross-linking Entropy for Domains
ina GPC

In the previous sections, we introduced four
undefined parameters: the monomer separation
distance (b), the persistence ratio (&), the excluded
volume (y), and the stacking gap (4b( = r;)). Since
the theoretical concepts should allow for flexibil-
ity in these variables, we will refrain from intro-

ducing any experimentally known values for b, &,
y or Ab until Section 3.1.

In general, the entropy contribution of a do-
main k will be

(AS{TY = <AS) . (12)
b;;

where k is the index of the domain, m; is the
number of BPs in domain k, b;; is an index that
specifies a particular BP (i,j) in domain k, and
<ASbfi;“> is the entropy change caused by unfold-
ing the nucleic acid from a structure in which
b;; 1s present to its equilibrium thermodynamic
displacement (R;;): the ideal denatured state. For
any given (i,j) in a GPC, Rjocj—i+ 1. The
“cost” is estimated from eqn (9) to be the change
in entropy resulting from unfolding the chain (at
position (i,j)) from its hydrogen bonded value
ry to its equilibrium thermodynamic displace-
ment (R;)):

my

(ASET) = 7ksO(O)), {ln (W Nb,1)

by

1
B <1 B waijk>}’ 13)

where N, (=j—i+ 1) is the segment length
enclosed by a given BP (i,j) in domain k. This
function is positive for any reasonable value of
N( = Ny (see Fig. 6).

If the persistence length can be treated as
a constant over the entire region of domain k,
then the total entropy of domain k can be divided
into three separate terms which correspond to
the sum of the cross-linking contributions in do-
main k for a particular secondary structure

(ASET) = 7kpO(&)

my

« {’:2 2 ED) ﬁ - ’”"}‘

(14)

When my, = 1, this expression reduces to eqn (9).

Since we have been assured that reactions are
reversible (Section 2.3.2), (AS; > = — (ASL”O,
where the superscript ¢ — f denotes a transition
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FIG. 6. A description of the free energy due to cross-
linking entropy—FE(cl}—as a function of the persistence
ratio (¢) for tRNAF" based on the best secondary structure
prediction of tRNA found by MFOLD. For ¢ > 1, the CLE
reflects the cost to squeeze the sequence together into
a shape conforming to tRNA with the corresponding stack-
ing gap separation between all the BP (eqn (10)), and for
¢ < 1, the CLE reflects the cost to stretch a sequence apart
to the same state (eqn (11)). Clearly, one can immediately
presume that a very small (¢ < 1) is unlikely for tRNA.

from the “coil state” to the “folded state™: the
reverse process of f'— ¢. The total entropy to fold
the sequence into the hybridized state is the sum
of all the cross-linking entropies from the indi-
vidual domains of the sequence (note opposite
sign!)

(ASGTy = = Y <ASLT™, (15)

allk

where the cross-linking entropic contribution is
denoted by the subscript “cl”. The cross-linking
entropy {AS$"/> is inserted into the Gibbs equa-
tion to find the total FE

Ag == (AgNN + <Agcl>)
= AA yy — T(ASyy + <ASTTD),  (16)

where A% defines the total Gibbs FE, (A% is
the Gibbs FE due to cross-linking and the sub-
script “NN” denotes local or “nearest-neighbor”
regime where A yy is the NNSS result for the
enthalpy and ASyy is the nearest-neighbor con-
tributions to the entropy. Then

(AGy = — TASGT !y =Ty, (AS{™. (17)
all k

More will be discussed on the evaluation of A% yy
in Part II of this work.

Fig. 6 shows the tendencies of the CLE as
a function of ¢ for a calculation of tRNAP". For
¢ — o0, we obtain an NNSS-like treatment:
{A%,> =0.For ¢ ~ 1, there is a local maximum.
For N = 1/(yy) oc 1/£, there is an entropic min-
imum (Section 2.3.2), and for ¢ — 0, there is again
a very large increase due to stretching of the
chain across the gap of the helix. The latter case is
rather odd, but would characterize a polymer
with a very short persistence length relative to its
cross-linking. From Fig. 6, it is clear that the
CLE dominates the FE at very small ¢ and to
a lesser extent in the range of 1 < ¢ < 10. Like-
wise, an FE minimum is found for ¢ ~ 0.2 (for the
current parameters: A =2 and y = 1.75) and
¢ - oo contributes almost nothing to the overall
CLE of the polymer.

3. Results

A test of this CLE strategy with respect to
specific examples of RNA secondary structure
will be reported in Part II of this work along with
further development of the basic theory present-
ed here.

Here, we discuss the known experimental
values for nucleic acids and will use these para-
meters (within their discussed limits) in the re-
mainder of this work as the basis for predictions
using the CLE theory and for making compari-
sons with NNSS strategies. We later show why
the entropy estimation used in traditional NNSS
strategies appears to work under certain specified
conditions (i.e. short domain sizes). The latter
condition is shown by demonstrating that,
the “sensible” parameterizations yield the same
entropic penalties currently used in NNSS
approaches (to within an additive constant).

3.1. EXPERIMENTAL PARAMETERS: b, 4, y AND ¢&

In Section 2.3, we side stepped any discussion
about appropriate values for b, 1b, y and &. Here,
we report sensible values for these parameters in
the context of RNA secondary structure calcu-
lations.

3.1.1. The Bond Distances (b and /)

The distance (b) between the nearest-neighbor-
ing ribofuranosyl sugars (on the same chain) of
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a hybridized A-RNA structure is roughly 59A
(Wyatt & Tinoco, 1993), and the distance be-
tween the C} bonds| of the hybridized pair is
roughly 10.5 A for A-RNA (obtained from Insight
II, Molecular Biosym Corp.). Hence, a reason-
able estimate for r is 1, ~ 2b, or 4 ~ 2. We will
assume that the stacking interaction reduces the
distance between monomers i and j such that (i, j)
has a stacking gap (separation distance) of
ry = 2b.

3.1.2. The Excluded Volume (y)

The value for the excluded volume has been
reported in the literature to be y = 1.75 in 3-D
(Fisher, 1966; Zuker et al., 1998). There is no
reason to assume that this parameter should be
changed in this work. In the course of this work,
we have experimented with different values of
excluded volume (1 <y < 2: Appendix C); how-
ever, we think that y = 1.75 is the most justifiable
parameterization based on the literature (Fisher,
1966), and will use this value exclusively in this
work.

3.1.3. The Persistence Ratio (&)

Currently, there is very little experimental in-
formation available on the persistence length.
A list of known values is compiled in Table 1.

There are five potentially flexible bonds be-
tween each nucleotide in an RNA sequence. An
additional degree of flexibility comes from the
small amount of pucker (most commonly the
2" endo and 3’ endo; (Gautheret & Cedergren,
1993; Gelbin et al., 1996)). Hence, the six bonds
that join a single nucleic acid between the 5" and
3’ ends (with an average separation of about
1.5 1&) should allow a fair degree of flexibility in
such a sequence. However, in the case of nucleic
acids of single strand RNA and DNA, the persist-
ence length appears to be similar to Fig. 2 where
the stems are rather inflexible. The experi-
mentally determined values for the persistence
ratio of single strand RNA and DNA are shown
in Table 1. After correcting for the excluded vol-
ume 7, the persistence ratio (£) at 37°C is approx-

| The bond joining the ribofuranosyl sugar to the nucleo-
tide base: A, C, G, or U.

imately 3 (or b~177 /OX) in most of the data listed
in Table 1.

The value of ¢ also shows temperature depend-
ence in the persistence length (Fig. 7). In poly-A
(Eisenberg & Felsenfeld, 1967), there is a rapid
decrease in the persistence length as the temper-
ature increases (Fig. 7). This is most likely due to
the gradual break up of non-Watson—Crick pair-
ing between adenines in the sequence (Burkard
et al., 1999). As the temperature increases, the
stems formed by non-Watson-Crick-type BPs
gradually shorten in length. For poly-U (Inners
et al, 1970) the temperature dependence of
b above 15°C appeared to be flat or increases
slightly. It is not clear as to why b should increase
with increasing temperature; however, this may
reflect swelling (Grosberg & Khokhlov, 1994) of
poly-U: another phenomena of polymers which
we have neglected to mention in part because we
assume that our miraculous “ideal solvent” is
capable of compensating for all these uncertain-
ties. The increase is small in these measurements.
The sequence of poly(AUGC) (Achter & Felsen-
feld, 1971) was measured with various bases
randomly removed from the sequence. No tem-
perature dependence is indicated explicitly in
Achter et al. (1971), but the authors state that the
properties are similar to poly-U. The remaining
measurements were done at only one temper-
ature; hence, no temperature dependence can be
extrapolated. The measurements on mRNA (f
actin) were carried out in vivo on cells from a rat
kidney (Femino et al., 1998). This would suggest
that the global structure of mRNA resembles
a self-avoiding polymer chain under biologically
active conditions. Nevertheless, there still is likely
to be local structure since the f actin must be
transported to the cytosol.**

The variability of the persistence length is par-
ticularly important in considerations about the
hairpins and stems in folded nucleic acid se-
quences. The minimum hairpin loop size closing
a typical nucleic acid sequence is assumed to
be 3nt in NNSS calculations. This is exactly
the persistence length of the examples listed in

**The measurement was done with the cells fixed. By
“fixed”, the terminology implies “fixed for good”; hence, it is
still arguable that the properties of the mRNA of a dead cell
are quite different from those of a living cell.
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TABLE 1
A list of known experimentally obtained persistence ratios for single strand RNA and DN A (ssRN A,
ssDN A). An additional row indicates the value for double strand DN A (dsDN A) for comparison™®

Persistence ratio

Polymer Experimental Experimental

sequence technique {R?*Y/Nb? & l conditions Source
poly(rA) LS, Sd 23.0 5.9 34 26°C, 1.0 M NaCl, pH ~7 a
ssRNA® LS, Sd 18.2 52 3.0 18°C, 1.0 M NaCl, pH ~7 b
poly(rU) LS, Sd 17.6 5.1 29 18°C, 1.0 M NaCl, pH ~7 c
ssDNA AFM 4.7 2.7 Ambient temp., 0.15 M NaCl, pH 8 d
ssDNA AFM 44 2.5 Ambient temp., 0.15 M NaCl e
sSRNA (mRNA) FISH 25.5 6.2 3.5 In vivo f
dsDNA AFM ~150  Ambient temp. g

*Column &' is the persistence ratio without any corrections for the excluded volume (& = y&). Column ¢ shows the
persistence ratio after correcting for the excluded volume using y = 1.75. Both column ¢" and ¢ are increased by a factor of 1.22

to reflect the \/3/2 in eqn (3).The persistence length is b = &b, where b = 5.9 A. The cited measurement techniques include light
scattering (LS), sedimentation (Sd), atomic force spectroscopy (AFM), and fluorescence in situ hybridization (FISH).The
following references were used: (a) (Achter & Felsenfeld, 1971); (b) (Eisenberg & Felsenfeld, 1967); (c) (Inners & Felsenfeld,
1970); (d) (Rief et al., 1999); (e) (Smith et al. 1996) (f) (Femino et al., 1998) (g) (Smith et al., 1992). Ref (d) and (e) are estimated
from the quoted persistence lengths: 16 and 154, respectively using the nominal “mer” separation distance 3. 4 A along the
linear double stand chain of DNA. Likewise, ref (g) is estimated in the same way as ref (d/e) for b = 500 A. Ref (f) is estimated
from the measured end-to-end separation (6 x 494 A, where 494 A is the radius of gyration) and the number of nucleotides in
rat kidney f-actin mRNA sequence (1648 nt). (1) Ref (b) involves a composite material in which some of the bases are missing
in the polymer chain, hence these values are expected to be only a remote approximation.

7/ 3.2. CONNECTION BETWEEN CLE APPROACH AND
Cm TRADITIONAL NNSS APPROACHES
“é’ = ) Now that we have developed the CLE model
§ 41 @ i A and have established an order of magnitude for
g3} i L o . the persistence length in Section 3.1, we can now
%ol - proceed to show that the CLE reduces to the
£ i L traditional NNSS penalties when conditions are
properly specified. In this way, the NNSS penal-

{] 1 1 1 1
0 10 20 30 40 50

Temperature (°C)

ties should be understood to be a specialized
subset of parameters which will work successfully
for certain types of calculations and will yield
results similar to the CLE. The CLE is an at-
tempt at generalizing the rules used in traditional
NNSS algorithms. In addition, we use these gen-
eralizations to help develop a theoretical predic-
tion about folded ssRNA and ssDNA sequences
for the regime where & > 1.

FIG. 7. Temperature dependence of the persistence length
for poly-A (O, 1740 nt; &, 1462 nt: Eisenberg et al., 1967) and
poly-U (&, 880 nt: Inners et al., 1970). The decrease in the
poly-A reflects the reduction in the length of stems resulting
from non-Watson Crick base pairing. Above 30°C, both
poly-A and poly-U have roughly the same persistence
length.

Table 1 and Fig. 7, and suggest that “rigidity” is
a major component in determining the minimum

size of a loop. However, it should be kept in mind ~ 3-2-1- The Estimated CLE Free Energy of a Stem

that the loop region could have a different & than
the stem because the context is different. The
stems are also likely to have context dependent
persistence lengths due to the subtle base pairing
differences of AU, GC, and GU bases. These
matters will be considered elsewhere.

The cross-linking entropy tends to weight the
size of the domain according to the following
lemma.

Lemma 1. For a specified domain k of length AN,
suppose that only half the BPs are stacked.
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Suppose further that this stacking follows a regular
pattern such that it forms a single loop which is
closed at N;j = 6 and only the next-nearest-neigh-
boring BPs are cross-linked (Fig. 8). Then for large
AN, the total entropy of domain k (with £ = 1) will
be approximately equal to

AS = (1/4)(k/ T)AN In( ANy, (18)

where k = kgTy/E, for & > 1.

Proof. The base pairing renders a combinatorial
series where j — i = 6,10, 14.... From eqn (10),
the maximum entropic contribution on AS,
(Section 2.3) will come from the total length of the
enclosed subsequence. The lengths of the separ-
ate enclosed subsequences become a product

In(6) + In(10) 4 In(14) --- + In(AN,)
=1In(6-10--- AN).
Therefore, the combinatorial pattern will be

1 24NAN2)!
5! 4UAN=DIN(AN, — 2)/4)

(19)

Applying Sterling’s formula and preserving only
the leading terms, we obtain eqn (18). [

The same procedure can be used to show that

if all the BPs are cross-linked in Fig. 8, then
AS = (1/2)(k/ T)AN; In(y ANy,). (20)

In an actual subsequence, the cross-linking
entropy of that domain cannot be determined
without calculating the specific configuration.
However, if we imagine the set of all shuffled
subsequences of the same length and base com-
position, then it would be reasonable to propose
that a grid-like structure having equal spacing
between adjacent BPs (as in Fig. 8) is the most

F1G. 8. A model of a hairpin loop (enclosing 4 nt) in which
the stacking interactions only occur between every other BP
in the sequence. Open circles refer to the unpaired bases and
filled circles refer to the cross-linked nucleotides.

reasonable “average structure” for an arbitrarily
selected sequence in which only half the positions
are likely to be cross-linked.

We now generalize this result to a sequence of
fractional percentages ACGU (p4, pc, pg and py).
The pre-factor in both eqns (18) and (20) is related
to the probability of cross-linking. It is shown in
(Dawson & Yamamoto, 1999b) that the mean
free energy of a set of shuffled sequences is a func-
tion of half the maximum number of BPs that are
possible in an ideally arranged sequence
weighted by the FE of the type of BPs. For
a sequence of arbitrary percentages of ACGU,
the maximum number of BPs that can form will
be roughly proportional to min(pg4 py) +
min(pg, pc) (Where we neglect the cross-correla-
tion between AU and GU pairs and assume
homogeneity of the general sequence). For
example, pc = pg = 0.5 can potentially form BPs
with the entire sequence, hence the pre-factor 1/2
that appears in [eqn (20)]. However, in any given
shuffled sequence of pc = pg = 0.5, only half the
maximum number of possible BPs are likely to be
found; hence, the mean cross-linking entropy
(mCLE) for this shuffled sequence will be
[eqn (18)]. A rough estimate of the mCLE to
domain k is

(AS> = (p/2)(x/T)ANIn(JAN),  (21)

where p = {min(p4, pv) + min(pc, pe)}-

From eqn (21), it is clear that the domain size is
a function of both the number of cross-links and
the persistence length of the given RNA sequence.
If ¢ is very large, the cross-linking entropy
becomes vanishingly small because AS oc 1/¢.

3.2.2. Correspondence Between NNSS and CLE
Models of Entropy

Postulate 1. The FE of an internal loop region is
related to the difference between the subdomain
formed by (', j') and the subdomain closed by (i, j) in
Fig. 9(a).

Evidence. We start by showing that the enclosed
region forming an internal loop can be approxi-
mated by a linear penalty when N > J in
Fig. 9(a). If the general form for the internal
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FIG. 9. A conceptual model for understanding Predictions 1 and 2: (a) a symmetric internal loop, where (i',') encloses
a subdomain of N nt (inner circle) and (i, j) encloses the internal loop of N + 4 nt (outer circle). In (b), the subdomain enclosed

by (i',j') contains N nt and the larger circle encloses N; + ¢; nt. Likewise, the subdomain enclosed by (i,
larger circle encloses N, + ¢, nt. The outer circle encloses both (i',j') and (i”,j) with a total of (N + N,) + (&1 + &) =

nt.

loop penalty is obtained, then we have shown
consistency with Postulate 1. We neglect all
asymmetric penalties in these considerations
(Mathews et al, 1999) which are important in
more precise evaluations but should not affect
these general observations.

From Fig. 9(a), let N be the enclosed segment
between (7, ). Let 0 represent the difference in
the length of the sequence that encloses the re-
gion between (i',j') and the enclosed region at
(i, ), where 0 < N. Neglecting all pre-factors: the
cross-linking entropy enclosing segment (7', ')
is approximately NIn(N) [using eqn (10)].
Likewise, the cross-linking entropy at (i,j) is
(N + DIn(N + 0), where the (N + 1) reflects the
addition of one more bond at position (i, j) than
at (', j'). Then the difference in the cross-linking
entropy contribution in the segment between
(,j') and (i, j) is approximately

(AGL
(kp/2)

=(N+ 1)In[y(N + )] — NIn(yN),
(22)

where x = kgTy/¢ (because we assumed & > 1)
and (A%, is the mean FE difference of the
internal loop due to cross-linking [eqn (21)] in
a shuffled sequence of ACGU (fractional percent-
ages: p4, Po> P> and py) (see also Section 2.3.3).

j")has N, nt and the
N +¢

Neglecting all higher-order powers of /N, we
have NIn[y/(N + )] — NIn(yN) ~ §. Hence,

(AG) ~ 2” (6 + In(WN)). (23)

Using the fact that 0 > In(d) and making the
crude approximation that InN ~ “Const” for
a fixed set of measurements on sequences of sim-
ilar length, we arrive at an expression that re-
sembles the penalties found in NNSS algorithms

(AGL)y ~ (%)ha (6) + “Const”.  (24)

For £~3, p~0.5, and assuming all cross-
links are formed on the stem [i.e. starting from
eqn (20) instead of eqn (21)], the pre-factor in eqn
(24) becomes kp ~ 0.2 kcalmol at 37°C. This is
almost in quantitative agreement with the slope
found in the entropy increase per nucleotide for
small n in the .# penalty look up tables and is also
consistent with the experimental conditions
(Table 1; Freier et al., 1986). The “Const” on the
right-hand side of eqn (24) is not constant [pro-
portional to In(yyN)] and reflects the real cost of
closing .# as the size of the enclosed subdomain
region increases.

Postulate 2. The linear contribution to the penalty
in IMBL structures calculated in NNSS
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algorithms is related to the difference between the
average cross-linking entropy contribution from
the separate branch point subdomains and the
cross-link that closes the iMBL subdomain

[Fig. 9(b)].

Evidence. Here, we will show that the solution is
bounded for the limiting cases and that the solu-
tion has the same form as Postulate 1 in its lower
bound.

In Fig. 9(b), region (i',j) and (i",j") enclose
N, and N,, respectively. The region enclosed by
(i,j) 18 (N1 4+ Nj) +(e1 + &) = (N + ¢), where
N =N, + N, and ¢ = ¢; + &,. For the structure
in Fig. 9(b), the difference in the cross-linking
FE is

(AGY
(kp/2)

=(N+1)In[y(N +¢)] —N;iIn(yNy)

— N2 In(yN>), (25)

where (A%.%> is the mean FE difference for the
iMBL region due to CLE.

First we examine the case where N; =
N, = N/2. Equation (25) becomes

(AGYY ~ (kp/2){e + In(yN) + N In(2)}.

To obtain the limits for N; > N,, we divide both
sides of eqn (25) by NN, and use the fact that
In[Y(N + ¢)] —In(yNy) > In[y(N; + ¢)]
— In(yN,) to obtain

AGY
(xp/2)

> Ny {In[y(Ny + &)] — In(YN,)}

+ In[y(N + ¢)] ~ ¢ + In(yN), (26)
which yields the inequality

<Ag7cl>
(kp/2)

¢+ In(yN) < < ¢+ In(yN) + N In(2).

For an iMBL of k branching points

N L c v (N
(NG ~u<2>{ +1m¢N)+_ZNJn<N>}

i=1 i

which is bounded between the limits

(AYd

e+ In(yN) < )

<&+ In(YN) + NIn(k).
(27)

Hence, in the limit, N; > N,, Nj--- N, the
# solution prevails, and for Ny = N, --- Ny =
N/k, the FE (i.e. the entropy decrease) tends to-
ward a maximum.

These observations suggest that the entropic
penalties of the s, #s, .#s and iMBLs currently
evaluated as discrete entities, are more likely to
be closely connected with the cross-linking en-
tropy. For fully cross-linked stems [i.e. starting
from eqn (20)], the pre-factor px is 0.2 kcal mol ~ !
(at 37°C, p ~ 0.5 and ¢ ~ 3) which is consistent
with the values used in NNSS algorithms:
between 0.2 (Williams & Tinoco, 1986) and
0.4 kcalmol ! at 37°C (Zuker et al., 1998). The
main point of approaching the problem by way
of eqns (24) and (27) is to illustrate that the cross-
linking entropy and traditional NNSS ap-
proaches have some common ground in which
they both are likely to produce similar results.

Equation (27) also shows that a symmetrically
shaped distribution of branch point stems ex-
tending off of iMBLs (such as shown in Fig. 9)
has the maximum FE and an asymmetric config-
uration of branching stems has the minimum FE.

Postulate 3. The loop penalty reflects the mean
cross-linking entropy cost required to close a free
segment of length n into a loop with m BPs.

Evidence. A simple consideration of how cross-
linking entropy is calculated is sufficient for Pos-
tulate 3. A comparison of the penalties used in the
Turner energy rules, and a sequence containing
4bp and a loop size of n (total length:
N =4x2 + n)is shown in Table 2, where £ = 3.0
for the stem and the loop regions, respectively.
The result matches the Turner energy rules
(Turner et al., 1988) to within a constant [the
“difference” column in Table 2, cf, eqn (24)].
Hence, the tendency is exactly the same and
a persistence ratio of 3.0 is already quite reason-
able as shown in Section 3.1. This further
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TABLE 2
Comparison between the cross-linking entropic
penalty, and the entropic penalties used in the
Turner energy rules for a loop which is closed by
a stem composed of 4 bp*

Loop
length n Y., — TAS Difference
(nt) (kcal mol ™) (kcalmol™')  (kcal mol 1)

3 1.533 4.100 2.567

4 1.688 4.900 3.212

5 1.828 4.400 2.572

6 1.955 4.700 2.745

7 2.072 5.000 2.928

8 2.180 5.100 2.920

9 2.280 5.200 2.920
10 2.374 5.300 2.926
15 2.769 5.800 3.031
20 3.078 6.100 3.022
25 3.332 6.300 2.968
30 3.548 6.500 2.952

* The first column indicates the length of the loop in terms
of the tabulated loop penalties. The second column indicates
the CLE. The third column corresponds to the Turner
energy rules. The last column shows the difference between
the two values (which is nearly constant for all n > 6). The
effect strongly resembles eqn (24). Values used in this calcu-
lation were & = 3.0, y = 1.75. Other stem lengths are also
amenable to this approach.

suggests that the minimum size of the loop
is partly a function of the persistence length in
the GPC.

4. Discussion

A theoretical model has been proposed to ac-
count for the folding behavior of RNA. The ap-
plication of the model to various aspects of
folding will be developed in Part II. However,
enough has already been explored to draw gener-
alizations about how this entropy behaves.

Using known parameters for RNA, the results
already suggest that the current entropic penal-
ties used in NNSS algorithms are essentially the
average entropic contribution for a generic se-
quence of RNA with adjacent nearest-neighbor
cross-links (complete cross-linking of the bonds
shown in Fig. 9). This point will be further sub-
stantiated in Part II where the method is applied
to secondary structure prediction.

The current treatment ignores any strain due
to the asymmetry of the structures that are for-

med. Additional effects like the angular depend-
ence of allowed monomer orientations (Flory
et al., 1966; Flory & Semlyen, 1966; Grosberg
& Khokhlov, 1994) are likely to have an influence
on the entropy, but are neglected in the current
model. The local value of ¢ (and the proximate
neighboring values of &), will also lead to correc-
tions in the predictions. None of these factors
should be routinely ignored in a more precise
treatment. However, these local effects do not
detract from the central point of this series: large
domains of high MBL hierarchal complexity
(HC) formed into a thicket of long double helices
of high base pair density (BPD) are unlikely in
most biologically significant RNA because the
entropy is a logarithmic function of the enclosed
sequence length and the BPD.

The persistence ratio (&) is the most likely para-
meter to influence the entropy in any given se-
quence of RNA. This parameter is essentially
a measure of the flexibility of the RNA (Hager-
man, 1997). Although other parameters like the
excluded volume () could be important in certain
unusual conditions, y is unlikely to vary signifi-
cantly from one sample to the next. The role of
persistence length can be seen in the minimum
loop size which has generally been thought to be
about 3nt (Scheffler et al, 1970; Delisi &
Crothers, 1971a) because the persistence length is
also typically in the range of 3 nt. Since a piece of
RNA cannot fold tighter than its own persistence
length, this experimental evidence is another re-
flection of the flexibility of RNA. NINSS strategies
cannot say anything about the flexibility of
a given piece of RNA. Indeed, they even assume
that the persistence length is less than 1 nt be-
cause they evaluate the enthalpy and entropy
only in terms of the nearest-neighboring BPs.
This is clearly contrary to what was found in
Section 3.1.

The theory predicts from eqn (27) that bal-
anced domain sizes [Fig. 9(b)] in the branching
points (N; =N,--- = N, = N/k) will have
a higher entropic cost because highly symmetric
structures maximize the FE. Highly unbalanced
structures where Ny > N,, N3, ---, N, minimize
the FE (due to the reduced symmetry). Hence, the
CLE also has an influence on the shape of a func-
tional domain. For example, a lever action due to
an iIMBL moving from a balanced subdomain
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distribution to a more unbalanced subdomain
distribution can now be envisioned as a possible
heat engine for a molecular machine. This has
been suggested for the T-loop of tRNA
(Yamamoto et al., 1984). This effect is also sug-
gested in the collapse of the P5abc stem of the
self-splicing intron T thermophila (Wu & Tinoco,
1998), although other explanations have also
been proposed (Thirumalai, 1998). Likewise, one
can envision a kind of ATP-driven pump action
in the suboptimal structure where one branch
grows longer while the other one becomes shor-
ter. These locomotive properties of iMBLs are
also likely to influence the type of conserved
sequences which are found in ribozymes (Fon-
tana & Schuster, 1998; Youhei & Yamamoto,
1994) because certain mutations may be lethal to
this locomotion even when two given secondary
structures look identical in their respective base
pairing patterns. There does appear to be a pre-
dominance of unbalanced iMBLs in natural
RNA.

Predictions using the cross-linking entropy
model offer a thermodynamic mechanism that
anticipates the break up of a loop from the 5" to 3’
end rather than at the base (or closing point) of
the loop. The cross-linking entropic effect will be
much stronger at the 5" to 3’ end of the chain
because of the larger force that is required to hold
the hairpin folded polymer chain closed [eqn (C.3),
Appendix C]. As the temperature is raised, the
probability of loss of structure will be highest
where the structure is the weakest. Hence, a clear
physical explanation is provided by the CLE to
explain why the chain will unzip from the 5’ to 3’
end rather than from the base (closing point) of
a hairpin loop. Likewise, the nucleation point is
most likely to occur at the head of the hairpin
rather than the tail because the lower resistance
to folding and proximity of the adjacent links
increases the probability of contact. (The evid-
ence for this will be shown explicitly in Part II.)
This property cannot be predicted from NNSS
algorithms which say nothing about the global
entropic contributions. Likewise, this folding
property was only an assumption in the loop
weight function models as no directionality can
be decided from a constant weight (Scheffler
et al., 1970; Delisi & Crothers, 1971b; Delisi,
1973b). In principle, the loop weight function

approach could be modified by adopting the
weight relations derived in eqn (9), where the
degree of cooperativity is incorporated into the
problem via the persistence length (the “link”).
The Gaussian polymer network model (Keskin
et al., 2000; Lustig et al., 1998; Debe & Goddard,
1999) also uses linear weights but could be modi-
fied accordingly to show this effect.

The concept of CLE is also applicable to the
evaluation of the FE in protein folding problems.
However, a clear distinction between the proper-
ties of o-helices and f-hairpins or f-sheets is
required.

The o-helix forms a staircase which roughly
makes one rotation with every four peptides
(Poland & Scheraga, 1965; Gibbs & DiMarzio,
1958), forming linkages between every fourth
peptide in a repetitive pattern. This cross-link
separation distance is approximately the same for
most peptides in the o-helix. Hence, the cross-
linking entropy will be an additive constant
along the chain of the o-helix. Indeed, the persist-
ence length is also about three peptides in length
or about 10A (Mueller et al., 1999; Reif et al.,
1998). The a-helix can attain infinite length in this
context (in principle) with only a linear increase
in the entropy with each peptide cross-link in the
chain. The w«-helices are more likely to exhibit
cooperative transitions due to the additive con-
stant cost of collapsing the helix. This cooperativ-
ity is accounted for in the size of £ which is likely
to be quite variable in protein structure.

It should be clear that an infinite a-helix carries
little functional utility. (The triple helix collagen
serves a very important “function” and is effec-
tively “infinite”; however, this is stretching the
definition of “functionality” from the role of an
active enzyme or protein, to a passive role.) An
active biological protein must interplay the
electro-mechanical properties of interacting parts
to make an effective enzyme. This interplay is
provided by the f-sheets, hairpins, etc.

In contrast to the o-helix, the f-hairpins in-
volve folding the peptide chain into a loop of
variable length (Fersht, 1999). These loops will
exhibit cross-linking entropic effects which de-
pend on the length of the f-hairpin that is for-
med. The cross-linking entropy in the various
types of f-sheets will depend upon how the loops
are closed. Again, the CLE must be averaged
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over the persistence length and an exact model
for A (the stacking gap) as a function of the
peptide is needed for the sheets.

The cross-linking entropy is likely to govern
the length relationships between the structures of
the a-helices and f-sheets in proteins. These can
be coupled to other regions that may involve no
structure in the isolated state and only take on
order when attached to another biopolymer.
These regions would resemble random coils or
disordered regions in a protein (Garner et al.,
1999; Li et al., 1999). Proteins often have peptide
sequences shorter than 400 peptide. Perhaps
proteins use a strategy of subunits to address
functional domain size limits.

This key difference between o-helices and f-
sheets or f-hairpins also applies to differences
between dsRNA and ssRNA (likewise: dsDNA
and ssDNA). Since the entropy of folding for
dsRNA (or dsDNA) is only attributed to the
freezing out of molecular bonds (loss of degrees
of freedom), the entropic penalty is essentially
constant for each BP formed. Consequently,
the unzipping process in dsSRNA (or dsDNA) can
be modeled (Poland & Scheraga, 1966) without
accounting for the logarithmic contribution
because this penalty is essentially constant for
a double helix (Poland & Scheraga, 1966) as it is
for the a-helix (Gibbs & DiMarzio, 1958; Poland
& Scheraga, 1965). Long chains of dsDNA will
form with only a linear increase in “cost” and the
dsDNA will behave like a GPC with a very long
persistence length ~ 150 bp. Hence, building
a human genome in dsDNA introduces no con-
flict with respect to the cross-linking entropy. On
the other hand, in folding a segment of ssRNA (or
ssDNA), a logarithmic weight will dominate the
FE at very large domain sizes and high BPD.

Questionable predictions from NNSS algo-
rithms are especially prevalent when there are
long segments of somewhat similar repetitive se-
quence features present that extend over the en-
tire length of a given sequence. For example,
NNSS strategies often predict that the long
spliceosome-type introns found in some mam-
malian mRNA form extremely long contiguous
stems and, in some cases, secondary structures
where HC > 12 (Dawson & Yamamoto, 1998,
1999a,¢). In such cases, the HC often grows with
added sequence length. Yet all of the known

catalytic RNA structures including ribosomal
RNA (rRNA) have comparatively short stems
with max(HC) ~ 6 (Glotz & Brimacombe, 1980;
Mueller et al., 2000; Wimberly et al., 2000). Un-
like the ribozymes, spliceosome introns need
“help” from the spliccosome to be extracted.
Do examples where HC > 12 actually exist in
nature? Likewise, an RNA sequence such as
(A100U100)100 1s predicted to form a single con-
tiguous stem of 10* BPs. Yet is there any evidence
for long stems of any comparable length existing
either in nature or as artificial constructs? The
CLE suggest that the answer to both questions is
“probably not”.

5. Conclusions

A Gaussian polymer chain model is used to
describe the effects of intramolecular cross-link-
ing (stacking) that occurs in biopolymers like
single strand RNA. General approximations of
this cross-linking entropy model imply that the
standard entropic penalties used in secondary
structure calculation algorithms are actually the
default penalties for an average structure of RNA
whose domain size does not exceed 100 nt and
also introduces important concepts such as flex-
ibility and persistence length to RNA secondary
structure considerations.

In multibranch loop structures, the cross-link-
ing entropy predicts several ways in which en-
tropy could be utilized by ATP engines to run the
molecular machinery of some RNA biomolecular
complexes. It makes the correct predictions
about the direction of folding in a biopolymer.
The model is also applicable to protein folding
calculations.
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APPENDIX A

Fundamental Thermodynamic Definitions
for the GPC

For a system obeying the properties of a
Gaussian polymer chain (GPC) (Doi & Edwards,
1986; Grosberg & Khokhlov, 1997; Grosberg &
Khokhlov, 1994), we define the following set of
state variables: N the number of “mers” (or links
in the polymer chain), T the temperature, f the
effective force acting between the ends of the
GPC, and r the root mean square (rms) displace-
ment between the ends of the GPC [see Fig. 5(a)].
In direct correspondence to the kinetic theory of
the ideal gas (Sears & Salinger, 1986), r relates to
the volume (V) and f'is analogous to pressure (p).

The interactions of a GPC assembly can be
considered a reversible process because there are
no dissipative interactions in the idealized model.
Consequently,

TdS = dU + fdr, (A1)

where U is the internal energy, S is the entropy,
and we follow the convention where the work

done by the system is positive (Sears & Salinger,
1986). The Helmholtz free energy () is
d# =dU — d(TS) = — fdr — SAT. (A.2)

Moreover, because the process is reversible in the
model, the equations are exact

27 [(os\ _[of
=) -(F), @

where ()- and ()r refer to the variable held con-
stant in the measurement process.

By definition, a system of distinguishable par-
ticles (i.e. obeying Maxwell-Boltzmann statistics)
must show a chemical potential of the form (Sears
& Salinger, 1986)

3 B as
= ksTInZ = — T(m%, (A.4)

where u is the chemical potential and Z is the
partition function. Accordingly, the Helmholtz
free energy is

F =— NkgTInZ = Np. (A.5)
For any true Maxwell-Boltzmann (MB) particle,
the chemical potential is an intrinsic variable
which is independent of N. Hence, linear in-
creases in the number of segments (N) of the GPC

must change the free energy (&) in a linear
fashion.

APPENDIX B
Derivation of the GPC Model

The first solution to the GPC problem was
originally attributed to Orr (1947) in de Gennes’
(1979) classic work. The GPC can be understood,
studied and tested by a host of techniques from
a simple random walk model (Feller, 1968, 1971),
to a random flight or flexible chain model (Doi
& Edwards, 1986; Plischke & Bergersen, 1994).
These same conclusions can also be arrived at
from an evaluation of the vibrational modes of an
N-dimensional system (Schneider, 1991). It is
a consequence of the central limit theorem (Fel-
ler, 1968, 1971; Grosberg & Khokhlov, 1994;
Baskaran et al., 1996; Fontana et al., 1993). Our
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approach follows primarily from Flory (1949)
and James & Guth (1947) with emphasis on the
assumptions underlying the GPC model.

In all cases, the statistical average of the mean
square displacement between the ends of the
GPC (which we define as R) is shown to be
R =b,/2N/3 (in 3-D space, Doi & Edwards,
1986), where N is the number of segments in
a polymer chain and b is the length of each
segment. Each segment along the GPC repres-
ents the position of an individual “link”, where
the total number of “links”f7 is equal to N, and
the total (stretched out) length of the polymer is
Nb. The parameter b is also known as the “per-
sistence length” (Doi, 1996; Doi & Edwards,
1986; Grosberg & Khokhlov, 1997; Grosberg
& Khokhlov, 1994; Plischke & Bergersen, 1994).

The entropy of a group of MB-particles in
a specified macrostate [ is estimated from the
statistical mechanics relationship (Sears & Salin-
ger, 1986)

S; = kgIn(Q)), (B.1)
where kg is the Boltzmann constant, and €,
specifies the thermodynamic probability of the
ensemble for a given temperature, number of
“links” (assemblies) in the ensemble, and the dis-
tribution of energy microstates.

Since the “links” in the GPC are distinguish-
able, the GPC must follow MB statistics. The
thermodynamic probability of a macrostate
obeying MB statistics is defined as (Flory, 1949;
Sears & Salinger, 1986)

(g)"™
N}’

2 =N1] (B.2)

where the product occurs over all possible micro-
states (i) of degeneracy (g;), N; is the number

11 A “link” is not necessarily equivalent to the monomer
(or “mer”) of a real-polymer chain. Indeed, there can be far
more “links” than “mers” and vice versa. For classical poly-
mers such as vinyl and its derivatives (Flory et al., 1966a), the
links are always longer than the spacing between the “mers”.
However, this does not always have to be the case. For
example, an intra-polymer chain cross-link formed in such
products as rubber will show behavior resembling Fig. 3
of Section 2.2. The assembly of “links” is also called an
ensemble.

configurations with a displacement r; (the rms
displacement of each segment or “link”) which
occupy microstate i at a specified temperature T

For each segment on the GPC, the energy
distribution of a segment (i) is expressed by an
end to-end displacement (p;) which connects seg-
ments i to its nearest-neighboring links (on each
side) (Flory, 1949). Since each segment is assumed
to be non-interacting, there are no restrictions on
the orientation of a given segment or the config-
uration of the segment’s nearest-neighboring
links. The statistical meaning of (p;) amounts to
counting of all the links (N;) with such a displace-
ment (p;) and considering how such links could
be arranged with respect to each other (ie.
g /N ).

For a flexible chain (or freely joined chain)
(Grosberg & Khokhlov, 1997), the displacement
distribution for a given segment is expressed by
the following probability density distribution
function (deGennes, 1979; Doi & Edwards, 1986;
Flory, 1949)

3/2
po(p) = <§> exp(— fp?),

where p = /x* + y* + z2, f = 3/(2b?), and 0 <

p < + oo (with variance of order p? ~ b?).

The probability density function (B.3) is evalu-
ated over a differential volume AV = 4np?Ap,
(where V is the volume) (Feller, 1968, 1971). Fur-
ther, we assume a constant temperature; hence,
AU =0, Z o p, and Q(p) oc p™(p) (which follows
from the definitions; Sears & Salinger, 1986). The
probability of a given microstate configuration
p; is (Flory, 1949)

(B.3)

p(p:) = polpdnpi Ap;

,8 3/2
=<;> 4np? exp(—PpR)Api

0<p;< + 0. (B.4)

Equation (34) expresses a macrostate
“snapshot” in which each set of configurations
(microstates) is represented by the index i (with
degeneracy g¢;). Let w, be the total number of
possible configurations available to a segment
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and let Q, define a reference state where
Qo =] Jiwd' = wg. Then, a particular microstate
is approximated by making the following substi-

tution ¢; &~ wep(p;). After substitution into
eqn (B.2)
(p(pi)wo)™
Q~N!] NI (B.5)

i

and, applying Sterling’s formula,}{ we obtain

Q
1n<Q—> =NInN —ZNlln(Nl)

0

+ 2. Niln (p(py). (B.6)

We might predict that the largest number of
configurations occur at p; = b and that very few
configurations occur at p; = 0 or p; > oo. Since
we are interested in finding the rms response by
the GPC for a given displacement p, this corres-
ponds to a macrostate in which all the micro-
states of the GPC exist with the same end-to-end
displacement p. Therefore, we fix p; = p, and
Ni = N

Two points are important here. First, although
eqn (B.4) is a continuous distribution, it is actual-
ly an approximation of a multinomial expansion
(Feller, 1968, 1971). Hence, Ap [eqn (B.4)] is
actually a discrete value. Second, we assume that
p; = b, because the function [eqn (B.4)] is sharply
peaked at p =b and (under the conditions of
thermodynamic equilibrium), the majority of
“snapshots” of the system will tend to reveal
a chain in which p = b.

In other words, since MB statistics do not
place any restrictions on the number of states
that are occupied (N;), we have simply asked
“what is the thermodynamic probability that all
p; will be in a macrostate expressed by b”? The
maximum for that thermodynamic state is then
N In(p(p)). For states p # b, we can establish an
upper bound in which Vp, Nln(p(p)
= Np(p)In(p(p)). In general, these values of
p # b are very improbable (collectively speaking)

11 A more accurate estimation is In(N!) = 1In(2n) +
LIn(N) + NIn(N) — N, where we have assumed that
NInN > N.

unless the polymer chain is forced into such
a configuration by some interaction such as
stacking interactions (for nucleotides) or hydro-
phobic interactions (for peptides). Undaunted, we
proceed forward justifying ourselves via appeals
to the upper bound and noting that (for p # b),
chemical bonds must be introduced to restrain
the value of p

In (g) = NIn{C(p/bYexp(— fp?)},  (B.7)

where C' = (4//7) (3/2)** (Ap/b).

This shows that Q(p) oc p¥(p). The N appears
because the individual links of the GPC each
contribute independently to the FE.

From eqns (B.4) and (B.7), the entropy for
a specified p is

Q

AS = S — SO = kBln<Q—O>

= Nk {In(C") + 2In(p/b) — fp?}. (BS)

where So = kglnQy = Nkglnw,. The entropy
[eqn (B.8)] has a global maximum at p = 1 /\/B

= b./2/3. Furthermore, the response of the sys-
tem (due to a given rms state p) is

2 1
f=T <%>T = 2NkBT<; - ﬁp> (B.9)

which shows the correct response (by the system)
to fluctuations in p and a restoring force centered
around p = b\/%. Moreover, both the entropy
and the response have the expected relationship
that is materially dependent on the number of
“links” in the GPC where the harmonic oscillator
component of the effective spring constant is
2NkgTp. It can also be seen that both eqns (B.8)
and (B.9) satisfy eqns (A.4) and (A.5) for a system
obeying MB statistics. (The partition function
Z( = p) is independent of N.)

However, eqns (B.8) and (B.9) are not in a us-
able form because p refers to the length of an
individual “link”. We must project this N-dimen-
sional system into 3-D (Schneider, 1990). To do
this, we observe (as a consequence of the
central limit theorem (Feller, 1968, 1971)) that the
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partition function (Z) scales with the number of
links

|4 3 V2 p\? [ Ap
“1= {ﬁ (m) (E) xp (fr ’<7>}
(B.10)

If we group the system into sets of dimers, then
we have N/2 dimers and

%= {ﬁ<2<2>>3/2<fp> ew(520)
(o

Finally, if we group all the links together, then we
obtain

o) (2 ()

\/N Ap 1/N
sl
Hence, ZY = Z, and an individual polymer chain
is also understood to be a single MB-particle
when viewed from this angle.

We now make the following substitutions in
eqn (B.12): r =/Np, « = /N and Ar=./NAp =b.
We use Ar ~ b because the shortest possible dis-
crete length Ar must be of the order of the length
of an individual segment of the GPC. Moreover,
this must be introduced as a semiclassical ap-
proximation of the quantum mechanical effects
of the GPC (although the MB distribution as-
sumes a truly classical system). Finally, the GPC
is based on a lattice model, which has discrete
length scales of order b. We now obtain

Zy= {% %)/@}/ (B.13)

and substituting into eqn (B.8), we obtain

(B.11)

(B.12)

AS = kg {In(Cy) + 21n(r/b) — ar?}, (B.14)

where Cy = (4/4/7)(3/2N)*>, and

f= 2kBT<% — ocr>

which is what we wanted to show.

In this final form, it is somewhat pertinent to
consider that because the GPC model assumes
independent—non-interacting—Iinks, some
rather amusing structures can be imagined. In
particular, if the number of links in the chain
1s odd, the chain could fold back and forth on itself
forming an rms displacement of 0, and thus occu-
pying the same space (N — 1)/2 times or (N + 1)/2
times (depending on the end point). Likewise, if
N is even, then the same folding back and forth
will yield a chain with displacement b and occupa-
tion of the same lattice site N/2 times. Although
such unphysical structures are extremely improb-
able, they remain possible in the GPC formula-
tion. This is the primary reason as to why
considering the excluded volume is important in
improving such calculations (Fisher, 1966).

(B.15)

APPENDIX C
Excluded Volume Considerations

In the derivation of eqn (B.14), we ignored the
dimensionality of the GPC in the interest of ex-
pediency. In the literature, the logarithmic term
in eqn (B.14) has usually been derived from the
volume dependence (Flory, 1956, 1976; Jacobson
& Stockmayer, 1950). This change in dimen-
sionality of the system introduces a pre-factor (y)
on the logarithmic term such that y ~ D/2, where
D reflects the dimensions of the system (Fisher,
1966; Poland & Scheraga, 1966). Hence, for the
ideal GPC in eqns (B.14) and (B.15), y = 1 which
is only true for two dimensions.

This dimensionality is further complicated be-
cause the GPC is a fictional construct which
permits the simultaneous occupation of two or
more segments in the same space (although such
configurations are extremely rare statistically
speaking). A self-avoiding random walk (Feller,
1971) is a more accurate description of a polymer
chain. Real polymers occupy space and different
monomers cannot simultaneously occupy the
same exact place. Hence, in a random folding of
a real polymer, not all possible configurations
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available to a GPC are allowed, and part of the
real polymer must be “excluded” by other parts
of the sequence. The net result is that the equilib-
rium separation distance in eqn (B.14) becomes
larger. The excluded volume sets upper and lower
bounds on y such that D2 <y < (D + 1)/2
(Fisher, 1966).

To approximate the excluded volume in the
GPC formulation, we introduce the following
probability density function (p.d.f.):

_ P\ 2 (Ap
plp) = Cy <E> exp(— Bp )<7>,

0<p< +o0o (C.1)
where y > 0, Cy/b*"*! (with N = 1) is the nor-
malization constant for the p.d.f. (analogous to C’

in eqn (B.7))
2 3 y+1/2
I'(y + 1/2) \2N

and I'({) is the gamma function with argument
{=v+1/2. For y = 1, we obtain the same value
for Cy as eqn (B.14).

The central limit theorem applies to the evalu-
ation of the p.d.f. Inserting eqn (C.1) into
eqn (B.5) and solving as before using the steps in
eqns (B.6)-(B.13), we obtain

Ch =

AS = ky {In(C}) + 2yIn(r/b) — ar?} (C.2)

_ (98 _ 7
f= T<5>T = 2kBT<r ocr> (C.3)

hence, the equilibrium separation is R = \/3)/705.

In the literature, y is known to be approxim-
ately 1.4 in 2-D and 1.75 in 3-D dimensions
(Fisher, 1966). Therefore, the root mean square
displacement will be increased, and the logarith-
mic contribution to the cross-linking entropic
effect will be larger when the excluded volume
conditions are taken into account.

APPENDIX D
The GPC in Traditional Polymer Studies

Cross-linking in traditional polymer physics
involves the linking between individual polymer

chains
bonds.

In the case of vulcanized rubber, the elasticity
of the rubber is also related to the basic proper-
ties of the single polymer chains; however, be-
cause of the cross-linking, the magnitude of the
chain interactions are proportional to the num-
ber of cross-links in the chain. The greater the
number of the cross-links, the greater the respon-
sive force of the rubber (Flory, 1953). (We assume
that the density of cross-links is small compared
with the segment lengths of the polymer chains
that separate each cross-link.)

Ever since (James & Guth, 1947) ignored the
volume dependence in their calculation of the
elasticity of rubber, the logarithmic contribution
to the entropy has typically been neglected in
calculations pertinent to traditional polymer
cross-linking. To understand as to why this can
be done, three main points need to be considered:
(1) the studies are only concerned with the
uniaxial stretching of a polymer, (2) typical mod-
els of polymers have expressed the cross-linking
between different polymers as a grid (sometimes
referred to as a “phantom network™ (Flory,
1976)), and (3) in cross-linked polymers, the inter-
actions occur between different polymer chains
(interchain), not the same polymer chain as is
considered in this work (intrachain).

Since the relationship between cross-linked
polymer chains resembles a grid and the only
interaction considered is uniaxial stretching, the
volume (V) of the polymer can be expressed as
V = [l,l,l,. In a phantom network, the interchain
cross-links can be approximated as springs which
join the points on the grid (with an equal average
spacing). If the phantom network is stretched
along [,, then a new volume (V) is reached with
V' = I[lil.. The volume-related entropic change
will be In(V'/V). However, in a grid like structure,
there is no change in the volume (V = V') be-
cause when [, is stretched to I, the cross-sectional
area will almost exactly compensate for this
change by a proportional decrease in [, x [, such
that the AV ~ 0. As a result, the logarithmic term
will show no significant contribution to the
stretching of a polymer chain.

There are some rather special cases where this
approximation scheme can break down. The
most notable example is the “superball”: a solid

in a random network of chemical
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rubber ball with a high elastic coefficient that
serves as a toy for children (particularly because
of its impressive bounce). The bounce of a su-
perball does involve a change in volume: due to
the compression on the face of a spherically sym-
metric elastic surface. The uncompressed parts of
the rubber superball remain spherical while the
face where compression is applied (the floor, the
wall, etc.) compresses along a flat planar surface,
V # V'. Hence, the cross-linked rubber “superb-
all” shows a volume-dependent effect.

Another example is when this problem is
applied to the folding of RNA. The elasticity

of rubber stems from cross-linking between
different polymer chains, whereas the entropic
interactions of the nucleic acids discussed here
occur within the same chain. This latter effect
is usually ignored in traditional theories of
rubber elasticity because it makes no significant
contribution to the elasticity (Flory, 1953). In
addition, because the chains of a nucleic acid are
more intricately connected, the specific arrange-
ment of the sequences is more critical to the
estimation of the entropy than is the case of
a complex network of cross-linked poly-isoprene
units.
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