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Abstract

Entropy plays a critical role in the long range structure of biopolymers. To model the coarse-grained chain

entropy of the residues in biopolymers, the lattice model or the Gaussian polymer chain (GPC) model is typically

used. Both models use the concept of a random walk to find the conformations of an unstructured polymer.

However, the entropy of the lattice model is a function of the coordination number, whereas the entropy of the

GPC is a function of the root-mean square separation distance between the ends of the polymer. This can lead to

inconsistent predictions for the coarse-grained entropy. Here we show that the GPC model and the lattice model

both are consistent under transformations using the cross-linking entropy (CLE) model and that the CLE model

generates a family of equations that include these two models at important limits. We show that the CLE model

is a unifying approach to the thermodynamics of biopolymers that links these incompatible models into a single

framework, elicits their similarities and differences, and expands beyond the models allowing calculation of

variable flexibility and incorporating important corrections such as the worm-like-chain model. The CLE model

is also consistent with the contact-order model and, when combined with existing local pairing potentials, can

predict correct structures at the minimum free energy.

Introduction

Modeling the entropy of a biopolymer is usually handled

in two steps. In the first step, the coarse-grained interac-

tions and conformations are modeled.  This typically involves

representing the monomers as featureless blobs that are

connected to each other like links on a chain and interact

with one another by thermodynamic potentials.  In the sec-

ond step, the detailed, local, context-dependent interactions

are included. Both steps are essential to estimating the pre-

cise entropy of a biopolymer; however, the coarse-grained

and fine-grained interactions appear to be independent

enough that they can be handled in an additive approach

(Honig et al., 1976). This is the basis of the hierarchical

folding concept (Baldwin and Rose, 1999ab; Tinoco and

Bustamante, 1999). The coarse-grained interactions tend

to affect the global entropy of the biopolymer whereas the

fine-grained interactions affect the local thermodynamics.

In this work, we focus on modeling the coarse-grained con-

tributions that affect the global entropy.

A true representation for the coarse-grained entropy of

any polymer remains unknown. Two models that are fre-

quently applied to the problem are the lattice model and the

Gaussian polymer chain (GPC) model.

Lattice models are quite successful at predicting simple

protein folds and the funnel shape in the folding landscape

(Dill and Stigter, 1995 ; Chan and Dill, 1997; Go, 1999;

Onuchic et al., 2000; Kolinski et al., 2003; Pokarowski et

al., 2003), protein evolution (Mirny et al., 1998), protein-

protein docking (Zhang et al., 1997; Mintseris and Weng,
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2003) and explaining surface adhesion of a protein in a very

intuitively simple manner (Liu and Haynes, 2005). Numer-

ous hybrid models with more real world examples also ex-

ist; such as real structure based models of RNA (Chen,

2008) and proteins (Day and Dagget,t 2003; Ding et al.,

2008).

Lattice models offer a convenient computational approach

to reduce the number of conformations of a small biopoly-

mer to a manageable size. For example, for a protein, one

might try a lattice model with a coordination number 3, yield-

ing O(3N) configurations.  The base is known as the coordi-

nation number (q). The coordination number is usually as-

sociated with the Ramachandran angles of a protein that

are mainly distributed within 3 principal sectors of the plot;

right handed alpha-helices (αR),  left-handed alpha-helices

(α
L
) and beta-strands (β) (Lesk, 2001).  Crudely speaking,

one can chose a single pair of Ramachandran angles within

each sector from the average of the observed angles to

“represent” that sector.  Similar observations can be made

for RNA (Takasu et al., 2002; Murray et al., 2003; Chen,

2008).

Yet such selections are ultimately subjective.  In addition

to these 3 regions; one could justifiably insist on adding a

variety of other protein secondary structure elements such

as beta-turns, 3
10

 helices, parallel and anti-parallel beta

strands and effectively an infinite host of other possibilities.

These can even be constructed based on some reasonable

criteria (Pappu and Rose, 2002).  The choice on how to

cordon off these sectors to assign such angles is often de-

cided based on computational considerations.  Neverthe-

less, whatever criteria is used, all such cordoning is subjec-

tive and not unique.

The GPC model is based on the experimentally observed

physical tendencies of real polymers (Flory 1969; Grosberg

and Khokhlov, 1994). The concept of a “chain” comes from

the image of a real chain where the links would roughly

resemble the coarse-grained features of individual mono-

mers (or “mers” for short). Experimental parameters such

as the radius of gyration and the polymer stretching interac-

tion can be directly associated with parameters in the GPC

model (Flory, 1953).  The GPC-model consists of a polymer

chain in which each link of the chain is free to rotate over

the entire 4π solid angle (able to rotate through every angle

of latitude and longitude including back on itself, which even

a real polymer chain cannot do). Hence, the GPC-model

also contains peculiarities that are not aesthetically satis-

factory   though other  standard models such as “the free

electron gas” contain similar disquieting artifacts yet yield

correct conclusions (Ashcroft and Mermin, 1976).

The lattice model and the GPC model are inconsistent.

Admittedly, because the lattice has fixed dimensions and

constraints, it produces a similar root-mean-square end-to-

end separation distance to the GPC model (App A; Section

A2). However, the entropy of a lattice model is proportional

to the number of residues N ( ) yet the entropy

of the GPC is proportional to the end-to-end distance

( ) where β is a constant (App A4, Equa-

tions (A9-11)).  These expressions have little in common,

especially since r is a variable.

The cross-linking entropy (CLE) model was developed to

model the coarse-grained entropy of biopolymers.  This

model has been shown to significantly improve the calcula-

tions of the minimum free energy and has been applied to

prediction of RNA pseudoknots and simple proteins (Dawson

et al., 2005; Dawson et al., 2007). The model also offers

ways to understand the flexibility, polymer-solvent effects

and correlation effects within a given biopolymer. A similar

estimate of the configuration entropy derived from the CLE

model (Dawson et al., 2001ab; Dawson et al., 2006; Dawson

et al., 2007) has been recently reported by another research

group (Hnizdo et al., 2008).

Here we show a consistent way to connect all of the best

features of both the lattice model and the GPC-model via

the CLE-model so that at one end of the spectrum we find

a lattice model and at the other end, we see a GPC-model.

In addition, we show how the worm-like-chain model (Flory,

1969) and the contact order model (Ivankov et al., 2003) fit

into this context. The discussion in this work is not restricted

to biopolymers. It applies to all polymers where binding of

diverse parts can be found. Although we often focus on the

more familiar Ramachandran angles common to protein

research, such concepts can be generalized (Taylor, 1948;

Takasu et al., 2002; Murray et al., 2003) such that the model

applies to all polymers where similar interactions are ob-

served.  This work focuses mainly on the theoretical as-

pects of the models because the practical applications of

the CLE model have already been demonstrated elsewhere

previously (Dawson et al., 2001ab; Dawson et al., 2005;

Dawson et al., 2006; Dawson et al., 2007).

Results and Discussion

The Lattice Model can Fail to Correctly Estimate the

Conformations of an Ideal Polymer

There are good reasons to use a lattice model.  It is diffi-

cult to do computer simulations on a true GPC-model be-

cause one must consider all the angles in the solid angle.

Typically, a real polymer is not free to rotate over this entire

lnS N q∆ ∝

22lnS r rβ∆ ∝ −

−   
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region; even in principle.  Hence, choosing a lattice of some

tractable coordination number is a very sensible strategy to

use in approximating the essential conformations of a given

polymer.*

However, is the lattice model a reasonable one-to-one

approximation of a simple folded polymer?  To examine this,

we turn to the example of protein beta sheets (β-sheets)

because the concepts of protein structure are likely to be

Figure 1: The full number of arrangements that can be generated from a protein composed of 3 beta-strands when right handed

crossover of the beta-strands is included: (a) no crossover, (b) all crossovers and (c) a mixture of (a) and (b). The notation

below indicates the location of the next strand (±1, ±2) and the x (±1x, ±2x) indicates a crossover beta-strand (Richardson,

1977). The total number of arrangements follows the rule 2n-1n!/2 (Cohen et al., 1982), where n is the number of beta-strands.

*It is important to distinguish between the GPC-model and the freely jointed polymer chain (FJPC) model, because there are overlaps and similarities.

Both can assume that the bond angle is free to rotate over the entire 4π solid angle.  The main difference is that the FJPC-model still treats the monomers

in the polymer chain as individual units (often including physically justified fixed bond angles) and therefore links between monomers are equal to the

physical distance between them.  The GPC-model goes one step further in abstraction allowing the distances between effective monomers to consist of

non-integral distances of the physical monomer to monomer (mer-to-mer) separation distance.  This distance is known as the Kuhn length (App A).  The

advantage of GPC-model is that it captures the physical behavior of real polymers which generally do not tend to bend on the same length scale as the

mer-to-mer distance.  Real polymers tend to be stiff and unable to bend on such short length scales. On the other hand, the FJPC takes into consideration

the contour length of the polymer chain and therefore, it vehemently resists stretching beyond the contour length. The GPC can be stretched to infinite

length. The FJPC-model is sometimes simplified to a finite set of fixed angles using molecular geometry as a guide.  Effectively, this reduces the FJPC-

model to the form of a lattice model.
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familiar to most readers.  Since this should also apply to

RNA, we first must show that an equivalent β-sheets-like

configuration can be generated with RNA pseudoknots as

well. For convenience, in this Section, we assume that the

Kuhn length (ξ: App A1) is of unit value; ξ ≡1 mer.

A set of n beta-strands (β-strands)  without other types

of protein secondary structure  yields a total of (1+n!)n!/ 2

 unique β-sheets. Usually, the left handed and mixed left

and right handed crossovers are excluded because they are

far less common (Richardson, 1977). The arrangement of

three β-strands that exclude all left handed and mixed cross-

over structures is shown in Fig 1. The notation (Richardson,

1977) indicates the positioning of the next strand relative to

a given strand where (±1, ±2) indicates non-crossover β-

strands and (±1x, ±2x) indicates right-handed crossover β-

strands. The total number of ways that n β-sheets can be

arranged (excluding left handed and mixed crossover) is

shown by (Cohen et al., 1982) to be

Ωβ = 2n-1 (n!/2)                              (1)

where the factor 2n-1 accounts for the β-sheets that contain

right handed crossover β-strands. The second term (n!/2)

is the combinatorial patterns of parallel and anti-parallel β-

sheets with no crossover (Fig 1a). All the conformational

patterns in Equation (1) can certainly exist and can be found

by X-ray crystallography or NMR techniques.

Figure 2: A one-to-one comparison between the patterns generated by 3 protein -strands and an equivalent arrangement

of RNA stems in the form of various RNA pseudoknots.  The RNA cannot form a direct neighbor as happens with the beta-

strands; however, by shifting them in the pattern of an ABACBC type pseudoknot (and other patterns), a similar pattern of

structure can be found. The blue and red stems suggest an order in which the structure might form; blue suggests initially

formed stems and red represents subsequent stem formation; see (Dawson et al., 2007) for details.

N

C

N

C

N

C

(123) (312) (132)

5' 3'

5'3'

3'5'

−   

−   

β 



Journal of Computer Science & Systems Biology - Open Access

www.omicsonline.com                Research  Article      JCSB/Vol.2 February  2009

J Comput Sci Syst Biol Volume 2(1): 001-023 (2009) - 005

 ISSN:0974-7230   JCSB, an open access journal

Figure 3: The number of unique arrangements of beta-sheets (excluding crossover parallel beta-sheets) for   =2,3,4, where

n is the number of beta-sheets. Because of a plane of 2-fold symmetry, the arrangements show factorial increase of n!/2.
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In Fig 2, a pattern of 3 stems forming various RNA

pseudoknots is compared with the equivalent pattern of β-

sheet patterns that contain no right handed crossovers

(Fig 1a). For RNA, the small red arrows point along the

RNA chain in the 5’ to 3’ direction of the chain. An RNA

stem is represented by the contiguous cross hatched re-

gions and indicates base pairing. (The double strand helix of

A-RNA is assumed in the ladder shape.) For a chain num-

bered from 1 to N, the large arrows point toward the tail of

the stem, which is located at the base pair closing with the

largest 3’ index. Comparing the two patterns, they are ef-

fectively equivalent. The color coding on the RNA stems is

meant to imply the linkage stem (or stems) and the root

domain (or domains).  A full description of the concept of

linkage stem and root domain are discussed in (Dawson et

al., 2007).  Hence, we focus on this smaller subset displayed

in Fig 2.  The combinatorics of this subset of protein beta-

sheet structures (containing no crossovers) follows a n!/2

rule (Fig 3).

Therefore, with no loss of generality in using protein beta-

strands, we consider a protein structure Ramachandran plot.

We can divide the Ramachandran plot into three major re-

gions α
R
 (alpha-helix), α

L (left-handed alpha-helix) and β
(beta-sheet) sectors. Then the coordination number (q) is 3

and we would say that the number of possible configuration

for an N residue protein is 3N-1. However, this is not the only

way we can cordon off the structure angles. For example,

it would be reasonable to divide the beta-sheet regions into

parallel- (β
↑↑

) and anti-parallel (β
↓↑

) beta-sheets, triple-he-

lix (β
3x

) and polyproline conformations (β
Pr II

) (Adzhubei and

Sternberg, 1994; Pappu et al., 2000; Pappu and Rose, 2002).

The coordination number is now increased to 6 and the N

amino acids (aa) have 6N-1
 conformations available to them.

We could also add 3
10

 helices and beta-turn (βθ) backbone

configurations to the list (Richardson, 1981). Indeed, we

could choose many additional ways to cordon off the

Ramachandran plot in some mutually exclusive set of sec-

tors; see for example (Pappu and Rose, 2002) where they

deduced a partitioning of 10 regions or (Pokarowski et al.,

2003) where q = 12. The coordination number is not unique.

For N < q, it is easy to see that the configurations can

overestimate the maximum number of configurations of N

free particles (N!).  For example, let N = 7 and q = 8, where

we chose α
R
, α

L,
 β

↓↑
, β

↑↑
, β

3x
, β

Pr II
, 3

10
 and βθ conforma-

tions  all reasonable choices for a 7 monomer protein.

Then 6! = 720 but 86 = 262144.  The fixed coordination

number far exceeds the configurations for N free particles.

Hence, it is not consistent for N < q.

For N q, it is perhaps less apparent to realize that the

fixed coordination number should underestimate the num-

ber of conformations accessible to a polymer.

Suppose we only permit a subset of combinatorial beta-

sheet patterns that contain no crossover (Fig 3) and we

make sequences in which the average β-strand plus turn

segment is 6 residues. This fully satisfies the structures in

Fig 2 and yields n!/2 possible configurations (Fig 3). Then

we write n = N / 6 and we compare it with the total number

of configurations. Since the arrangement of the β-strands

depends on the number of conformations, the total combi-

natorial number of β-strand arrangements must not exceed

the total number of conformations predicted by the lattice

model and, indeed, should be much less than that

where we assume a nominal coordination number of q = 3.

Taking the logarithms of Equation (2) and applying Sterling’s

approximation, we obtain

  

Rearranging and taking the limit on the dominant terms (with

n = N / 6) yields the following inequality

   

Equation (4) cannot be true for all N given a finite seg-

ment length containing a beta-strand and turn length 

(here a sum length of 6 aa). Solving Equation (4) yields 

ln N =6 ln  3+ ln 6 + 1, or N = 11980 aa.  This is a very large 

number; however, for any finite q, Equation (4) cannot be satisfied

for some N large enough.  Including the prefactor 2n-1 in

Equation (1) does not satisfy Equation (4) either; in fact, N

will become smaller because Equation (3) will grow even

faster. Likewise, including left-handed crossovers and mixed

right-handed and left-handed crossovers causes the left hand

side to blow up even faster still.  Therefore, we have a

contradiction.  Moreover, with factorial growth in the ar-

rangement of beta-strands, the total number of conforma-

tions must also be on the order of N! or q ~ O(N) for a

It just so happens that 36 = 729 which is close to 6!; however, there is no physically objective reason to exclude 8, 10, 20 or even more such coordination

numbers from the possible list.

†

†

 

1!/ 2 ( / 6)!/ 2 3 N
n N

−= (2) 

 

 

( ) ( )1
2

ln( !/ 2) ln 2 ln ln(2)n n n nπ≈ + + − −   (3) 

 

 

1

6 2 66

6

ln
1

lim ln 1  ln 3
1 6N

N NN

N

N→∞

   + −          = −  −   
  (4) 

>>  

<<

<<



Journal of Computer Science & Systems Biology - Open Access

www.omicsonline.com                Research  Article      JCSB/Vol.2 February  2009

J Comput Sci Syst Biol Volume 2(1): 001-023 (2009) - 007

 ISSN:0974-7230   JCSB, an open access journal

distinguishable arrangement of conformations.

The number of conformations of a lattice model cannot

be universally estimated for all N using a single fixed coor-

dination number (though it may approximate that number

for some N). Furthermore, the choice of q is not unique.

Lattice models were originally intended for crystals where

crystal packing certainly defines and limits the orientations.

They were applied to biopolymers to approximate the ex-

pected structure and reduce the computational load. We

will show later that we can fix this issue by taking the de-

generacy into account.

A Derivation of the Cross Linking Entropy Model

Here we derive the cross linking entropy model (CLE-

model). For simplicity, we assume a Kuhn length of ξ ≡1
mer (App A1).

First we consider the defined parameters in a Gaussian

polymer chain (App A4). The extensive parameters (i.e.,

measurable) are the radius of gyration that yields an esti-

mate for the root-mean-square (rms) end-to-end distance

(r) and the force (f) acting on the terminal ends of the poly-

mer chain. From the definitions, the heat flow due to the

work done by a polymer chain consisting of N monomers

with state parameters r and f (in a reversible reaction) is

TdS = dU + fdr,                 (5)

where U is the internal energy, S is the entropy and T is

the temperature. For a polymer, ∆U ~ 0 (Flory 1953). Equa-

tion (5) takes a form similar to the work done by an ideal

gas in which fdr replaces PdV (where V is the volume and

P is the pressure and the response behavior is also analo-

gous). The Helmholtz free energy is F =U -TS. For the

state parameters r and f

dF = fdr – SdT                   (6)

with

Then . From the definition of the GPC (App

A4&5), S(r) is independent of T, hence, the virial equation

of state has the form

For constant T, Equation (6) becomes

Using Equation (A16) with δ = 2, γ = 1, and ν = 1/2 and

Figure 4: Example of a group of springs arranged in parallel with a force applied along the axis of the spring: k
l
 (l=1,…5).

On the right hand side is a wall and a force f is applied from the left hand side. The response of these parallel springs is the

sum of their respective spring constants.

Given the statistical definition of the models, on a square lattice, a pair of successive monomers can overlap on themselves.  Hence, one possible pattern

is a chain that folds back and forth on itself over and over again. However, besides being entirely unphysical (though allowed in the definition), such

patterns are not distinguishable because a large fraction of entities will occupy exactly the same positions in the lattice over and over again. Furthermore,

even if we admit such arrangements, Equation (4) shows that the lattice model still cannot satisfy all the possible configurations for large enough N. This

section is dealing strictly in statistics. All the elements are accounted for on the left hand side and no restrictions are placed on the right hand side of

Equation (4). Under these conditions, the right hand side must satisfy Equation (4).

‡

‡

r

F
S

T

∂ = − ∂ 
 and 

T

F
f

r

∂ =  ∂   
(7) 

 
TfrS ∂−∂=∂∂ //

 

T T

F S
f T

r r

∂ ∂   = = −   ∂ ∂   
   (8)  

T T T

S
TdS T dr fdr

r

∂ − = − = ∂ 
   (9) 

k1

k2

k3

k4

k5

f



Journal of Computer Science & Systems Biology - Open Access

www.omicsonline.com                Research  Article      JCSB/Vol.2 February  2009

J Comput Sci Syst Biol Volume 2(1): 001-023 (2009) - 008

 ISSN:0974-7230   JCSB, an open access journal

applying Equation (8), the force response between the ter-

minal end-points of a polymer is

where α = (γ +1/2) / 〈r2〉, 〈r2〉 is the root mean square end-

to-end separation distance (Equation (A3)) and k
B
 is the

Boltzmann constant.  The minimum for Equation (10) is lo-

cated at  .  This expresses the minimum in the

end-to-end separation distance (not the rms-distance 〈r2〉 = ξΝb2 

indicated in Equation (A3)).  When r < r
o
  or r > r

o
, a

force drives the end-to-end distance back to r
o
. For a GPC,

γ ≡1 and 

So far, we have only considered the end-to-end distance.

However, Equation (10) is not restricted only to the ends of

the chain.  For any (reasonable) number of residues (N) in

a polymer chain, this same 〈r
2

〉 = ξNb
2
 relationship holds.

First, from Equation (A4), the relationship can be translated.

Second, for every length of sequence, this property holds.

Hence, it is a general rule that applies to every point on a

polymer chain. In short, for any indices i and j, where 

i < j,〈r
2

〉
ij
 ≈ ξ (j – i + 1)b2.

We now ask what happens if we chose a set of specific

coordinate pairs on the chain and apply a constraining inter-

action on them.  The force equation resembles the displace-

ment of a spring.  Figure 4 shows a bank of 5 springs aligned

in parallel to which a force is applied.  The effective spring

constant for an array of springs in parallel is the sum of the

individual spring constants. Hence, the effective force is an

additive property of the effective spring constant times the

displacement

f = f
1
 + … + f

n
 = (k

1
 + k

2
 +…+k

n
) ∆χ     (11)

where ∆χ is displacement k
1
,k

2
,…,k

n
 are the individual

spring constants, and f
1
,f

2
,…,f

n
  the individual contribution

of spring k
l
 (l = 1,2,…n) to the force.

By analogy, we build a similar model in which a polymer

chain is folded out to its equilibrium configuration and held

in place by an array of springs (Figure 5). Just as pressure

pushes against the surface of a container (force/area), so

Figure 5: Based on the analogy presented in Figure 4, a group of springs arranged in parallel and set in equilibrium on a

polymer chain.
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the equilibrium condition for the correlated motion of the

monomers push and pull the contour of the polymer chain

back to the equilibrium state.  Labeling the interaction force

between monomers ij with the index k, if we now force

interaction between any pair of residues k, we observe a

force f
k 

in response. The dependence of i and j on r
k
(=r

ij
)

and f
k
(=f

ij
) is only with respect to the number of residues

separating them, and there is no explicit dependence of the

other residues on the value of r
ij
 (a general characteristic

feature of models like the GPC).  Given this behavior, it

follows that when n such forces are applied, we should ex-

pect a similar expression as Equation (11) to emerge: namely,

 f=f
1
(r

1
)+ f

2
(r

2
)+…+ f

n
(r

n
)   (12)

Substituting this with Equation (9), we find

and equating individual terms with Equation (12) and inte-

grating leads to

Factoring out the constant T and solving for the entropy we

obtain

which is exactly the same as Equation (A23) in App A6 for

ξ ≡1 mer.

Normally, we should expect that ξ > 1
 
mer.  Because the

CLE model averages the entropy contributions of each in-

teraction over the Kuhn length (ξ ), for ξ > 1 mer, the en-

tropy in Equation (15) should be scaled by a factor 1/ξ  (ex-

plained in App A and (Dawson et al., 2001a)).  Doing so,

the result exactly agrees with the expressions found in Equa-

tions (A11), (A16-A20) and therefore Equation (A23).

There are at least four independent ways to arrive at

Equation (15). In (Dawson et al., 2001a) the CLE-model

was derived directly from physical considerations of the

entropy and in (Dawson et al., 2001b) it was derived by

assuming that each connection leads to the creation of a

new loop. In this Section, we have derived Equation (15)

from consideration of the force on a chain (which is physi-

cally analogous to the pressure of an ideal gas). Equation

(15) can also be derived qualitatively from considerations

of diffusion.

The CLE Model Satisfies the Coordination Number

Using the GPC Model

The entropy of a folded polymer is known to have the

form of an integral expression (Dill and Stigter, 1995; Chan

and Dill, 1997).  Here we show that the summation rule in

Equation (15) has the properties of integration and that it

satisfies Equations (2 – 4) with the GPC model.  We show

that the conformations of a polymer chain composed of N

segments has a coordination number that is a function of N;

i,e., q = f(N). Hence, under these conditions, the CLE model

satisfies both distinguishability and Equation (4).

The summation rule in Equation (15) is a consequence of

integrating the correlated interactions (the cross links) in

the model.  From the derivation of each ∆S
k
 (App A3, Equation 

(A7)), ∆S
k  represents the probability that state k in configuration 

r
k[i]

 should acquire a configuration r
k[f]

: p (r
k[f]

 ∩ r
k[i]

)∆r, 

where p is the probability and k  ⇔ (i,j) describes the

interaction between monomers  i and j (App A, Equa-

tion (A3)ff). The entropy S
k
(r

k
) corresponds to the prob-

ability of the configuration r
k
: P(r

k
)∆r. The ratio of these

Figure 6: Example of a single hairpin containing L
s
 base pairs and a loop of length l nt. The total length of the sequence is

N.
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states (associated with r
k[i]

 and r
k[f]

) form a conditional prob-

ability

Writing Equation (16) in terms of the entropy, we see that

Equation (15) is measuring the likelihood that each state k

will transition from an initial state [i] to a final state [f]

where k[ ]
 
denotes the state of the interactions between ij.

We transform the summation into integration by exchang-

ing the state label k for the enclosed sequence length (N(k))

Equation (18) calculates the total change in entropy due to

forcing a polymer into a specific configuration that is a func-

tion of N(k).

In general, Equation (15) is much easier to arrange and

evaluate than the integral form in Equation (18).  However,

for an RNA chain forming a hairpin in a single stem from 5’

to 3’ (Figure 6) or two anti-parallel beta-strands joined via a

loop, the summation in Equation (15) can be easily written

as an integral. For the GPC with parameters γ and δ ≡ 2,

Equation (15) becomes

and, converting to an integral,

Now, using the relationship that N = 2L
s
+l,

Hence, q ∝ N easily satisfies Equation (4).  Equation (21)

can also be derived directly from the summation (see

(Dawson et al., 2001a)).

What does this mean?

First, equation (21) shows factorial-order growth with the

number of binding pairs (i.e., cross-links) that are formed.

The RNA-stem has strong correlation due to the fixed and

stabilized structure. This also suggests that the “penalty”

for RNA-stem formation should go mostly to stem forma-

tion rather than to loop formation for the coarse-grained

entropy. (The fine grained entropy counts in the loops and

in the pairing interactions.)  This relationship also would apply

to various beta-sheet conformations.

Second, Equation (21) is consistent with the fact that the

number of ways that N distinguishable particles can be ar-

ranged is N!. It is consistent with the Gaussian (and Gamma)

function statistics because its maximum value is always less

than or equal to the normalization constant (Equation (A11)).

Moreover, the global entropy is known to be an integral prop-

erty for this type of system (Dill and Stigter, 1995; Chan

and Dill, 1997). Hence, Equation (15) is consistent with the

concept of integration and consistent with textbook statis-

tics.

Equation (21) is also consistent with the fact that x-ray

The independence of the conditional probability for this Gaussian model is understood because it can be worked out from a Markov chain rule where

successive steps in the configuration depend only on the given configuration at the immediate previous step and are independent on any steps prior to

that point (Montroll, 1950; Feller, 1968 and 1971). In other words, knowledge of previous steps is restricted to the state of the current step and the next

step to be assigned.  We are, therefore, justified to use this strategy on the grounds that it is the definition.  Further, the theorem on the subadditivity of

entropy assures us that S
12

 ≤ S
1
 + S

2 
.  Hence, at worst, we have consistently erred on the side of overestimation of the entropy. One can visualize that

the effective coupling dies off with distance; hence, for large enough Kuhn length, the Markov model is reasonable. This is the concept of renormalization

theory discussed in App A1. Whereas the model can certainly be further refined, it does not change these concepts.

**It is true that the combinatorics of RNA secondary structure stems follow a 2N-1 rule. This is only the RNA secondary structure. Furthermore, whereas

this explains adequately the computational combinitorics of RNA secondary structure, it does not justify equating the combinatorics with the entropy

because these systems involve distinguishable entities.  The combinitorics only consider the pairing; not the distinguishable relationships or how it got

in a particular configuration.
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diffraction can distinguish these indexed monomers and

produces a structural factor proportional to the number of

monomer (N). Were the true structures that of a lattice, a

coordination number (q) should emerge from the lattice

parameters and structural factor of the x-ray diffraction data

and most of the monomers in the protein structure or RNA

structure could not be uniquely identified and assigned be-

cause of this degeneracy. We would observe dispersion 

akin to a crystal with many defects. We observe unique

angles that are distinguishable (e.g., for proteins, the

Ramachandran plots all show non-degenerate distinguishable 

residues).

For lattices that use the self avoiding random walk (App

B) with a large enough coordination number, degenerate

(but distinguishable) conformations have been observed

(Pokarowski et al., 2003). In this case, the example con-

tained approximately 12 residues and the lattice was a face

centered cubic (i.e., q = 12).  Hence, even the lattice model

predicts degeneracy when a large enough coordination num-

ber is used.

Finally, this model satisfies the inconsistencies in Equa-

tion (4). A unique coordination number (q ~ O(N)) is al-

ways obtained from the CLE model combined with the

GPC.

Making the Lattice Model Consistent

We have shown that the CLE model satisfies Equation

(4). In this Section, we show how to unify the lattice model

and the GPC.

The relationship between the lattice model and the CLE-

based GPC can be expressed as a family of equations hav-

ing the following form

where q(N), g(N), h(N) and α(N) are increasing func-

tions of N, and w and β are a constants and we have as-

sumed a unit Kuhn length  (ξ ≡ 1 mer).

For example, if q(N) = ΨΝ, g(N) = (ΨΝ)1/Ψ, h(N)=eN,

α(Ν) = γΝ, w = e and  β = (γ+1/2), then

and changing to the logarithm form, we obtain

The derivative with respect to N is

which is the same form as Equation (A19) and easily trans-

forms into

.

When Equation (22) uses the values q(N) = N, 

g(N) / h(N) = N, α(N) = N, w=e and β = 1/2, we obtain

which is very close to the asymptotic approximation known

as Stirling’s formula N! ≈ (2π)1/2 (N/e)N N1/2,

whereN!=1.2.3…N. The total number of ways one can ar-

range N distinguishable objects is also N! in size.

All the amino acids in a protein (or RNA) are distinguish-

able using X-ray crystallography or NMR spectroscopy.

Such monomers are semi-classical enough in size and mass

to obey Maxwell-Boltzmann statistics which are used when

computing the statistics of distinguishable objects. It fol-

lows that the true number of conformations must also be of

In terms of Equation (4), the CLE-model permits N unique angles; hence, all entities in these models are theoretically distinguishable. Nevertheless, in

this Section, we currently are still ignoring the fact that there is real physical space involved with a real polymer. This must limit the set of possible

conformations and will be addressed later in this work.

The derivation of Stirling’s formula is via the Gamma function: .  However, in N plays the role of x and the integration of t is

from 0 to ∞. In this work, the probability density function and its weight ((e-t)t x+1 dt) have the same form (after exchange of variables) as Equation (A12).

However, x corresponds to δ γ  and the integration is from 1 to N. Therefore, whereas both arrive at almost the same formula, the meaning behind the

operations is completely different. A detailed derivation of Stirling’s formula is found in Lebedev (1965).
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order N! in size. In the previous section, we have shown

that the summation in Equation (15) is also a form of inte-

gration. Equation (21) leads to Equation (23); whence the

number of conformations is of order NN. Equation (26) shows

that this is of similar size to a factorial expression. The CLE

model yields a family of equations that are consistent with a

system of distinguishable particles.

The lattice model requires that q(N) = constant ≡ q
o
, 

g(N) / h(N)=1 and β =1. With the exception of a range of values

around q
o
, this does not match conceptually with a simple

integration of Equation (25). Neither does it return anything

remotely resembling a Gaussian model when we try to evalu-

ate its derivative:

A variant of the lattice model has the form CN   q
o

N ln Nγ

(Arinstein, 2005). This conforms to the second term in Equa-

tion (25). However, it still fails to satisfy Equation (4) for N

large enough.

What is missing is the degeneracy. For a lattice constant

q
o
 and sequence length N, the degeneracy σ (Ν) is

and so it grows monotonically with N. Equation (28) re-

moves the fact that we generate too many states when

and too few when  . In Equation (28), the co-

ordination number is q(N)=N, the root mean square devia-

tion expands to  and the scaling factor is

the exponential base w=e. This is a standard Gaussian dis-

tribution.

The reason why the lattice model has often been suc-

cessful is because the sequence lengths that are used are

typically of similar order to q
o
. The extreme computational

costs usually restrict the use of lattice models to 4 <    < 20

mers. For such cases, Equation (27) has the form 

and, as a result, it tends to yield conformations of the ap-

proximate order; disguising the issue.

We have shown that Equations (22-25) are consistent with

a Gaussian-type model and satisfy the inequality on the right

hand side of Equation (4). Equation (27) has the same form

as Equations (22-25) and therefore, the CLE can incorpo-

rate this model. Equation (4) is satisfied if we weight the

coordination number by Equation (28). Therefore, the CLE

model embraces both forms and shows the route of trans-

formation between them.

Including Variable Flexibility: the Kuhn Length

Most functional biopolymers have different flexibilities in

different parts of their structures that reflect their function

and all such polymers have a Kuhn length larger than one

mer.  A scaffold should be stiff (  ~ 10 mers) whereas a

protein-protein docking region would require “shock absorb-

ers” and flexible interfaces (  ~ 3 to 5 mers) to help the

subunits bind.  Mechanical parts require flexible joints (  ~

3 mers). All this indicates that we need a model that ac-

counts for different flexibilities of a real polymer.

For the case where ξ ≠ 1
 
mer, Equation (22) must be

renormalized (see App A1). For  > 1, Equation (22) is trans-

formed as follows

where  functions as an operator for scaling the global

entropy (Equation (A18)).

In Equation (25), we obtained the isolated entropy for a

particular binding pair (or region of binding pairs) in the

biopolymer.  Because the conformations and their deriva-

tives are related and separable, we can handle each of these

parts separately and add them together according to Equa-

tion (15).

We can now generalize these findings.  From Equation

(15), we can sum the entropies.  From Equation (25), the

derivatives express the instantaneous long range entropy

contribution between mers ij. A full transformation for the

CLE model for a given binding pair (bp) configuration (Equa-

tion (A23); App A6) becomes

where N(ij) corresponds to individual binding pairs, ξ
k
  re-

fers to successive segments of mers k each of which has a

Kuhn length of ξ
k
. The first summation of Equation (30)

scales the contribution of ∆Sγδ (ξk
) (the local coarse-grained
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entropy; App A6) for all segments of mers k in the polymer

chain and the second summation scales the entropy of a

group of binding pairs (the global coarse-grained entropy;

App A6), where ξ
k
 can vary depending on the location of ij.

Here we presume that ξ
k
 > 1 mer. Hence, the model is

easily adapted to a variable Kuhn length from first prin-

ciples; unlike either the lattice model or the GPC.

We can now understand from the total entropy that

branching in RNA structures reduces the entropy loss.

Consider two branches of length N
1
 and N

2
 such that N

1
+N

2

≤ N
3
, where N

3
 is the closing point of the two branches. It is

clear that even , surely therefore,

. Hence, Equation (22) shows that branch-

ing is a way to reduce entropy loss in a complex structure.

We should expect multibranch loops in slowly folding poly-

mers like RNA to branch if there is any reasonable option

to do so. It is possible therefore, to scale these contributions

independently allowing a variable Kuhn length within the

same structure via Equation (30), yielding a variable flex-

ibility in the final structure.

For a pure lattice model where no correction for degen-

eracy is necessary, ∆S
ξγδ

  involves a small correction pro-

portional to ln(q
o
). The entropy in Equation (30) is then

which is a linear function of N: (N-1)ln(q
o
) (White et al.,

2005).

Using the CLE model, not only have we found a way to

transform the lattice model so that it is consistent, we have

shown how to evaluate a lattice when the structure has a

variable flexibility.

Squeezing a more Realistic Model from the Bound-

aries

In previous Sections, we have already made issue with

the Markov chain approximation used in the GPC-model

and the lattice model. The lattice model and the GPC are

merely statistical models that ignore the physical realities of

the systems they model. These models have largely been

successful because the physically impossible configurations

just so happen to have a small enough probability that ignor-

ing their “possibility” does not significantly affect many re-

sults. Nevertheless, outrageously absurd configurations can

be imagined that become ever more possible with increas-

ing length. Hence, an attrition of such conformations is ex-

pected particularly for large N. Here we consider how to

build a more realistic model for estimating the total number

of conformations of a biopolymer that considers real poly-

mers with self avoiding interactions, coordination limits and

chain-winding limits.

Equation (23) and (29) express a family of equations to

which both models belong. We have seen in Equation (4)

that the lattice model can underestimate the number of con-

formations for large sequence length. Likewise, because

the Markov model involves non-interacting particles, the

GPC-model can overestimate the true number of confor-

mations. Therefore, we can set bounds on the solution.

The basic lattice model permits folding back on itself.  This

is certainly physically impossible and should be removed

from the set of possibilities.  This is addressed by consider-

ing a self avoiding chain.  Since folding back on the same

chain is forbidden in this model, the coordination number

(q
o
) must necessarily be reduced. We therefore introduce

an effective coordination number for the lattice where

(Sykes, 1963). See App B for an explanation of how

to estimate an effective coordination number.

The upper bound is the GPC model.  For the GPC model,

the self avoiding walk is often approximated using the lat-

tice model results of (Fisher, 1966), where the exponent ( )

on the volume term of Equation (A12) or the logarithmic

term of Equation (25) or (A19) is increases from 1.5 to 1.75

in 3 dimensions. The consequence of a self avoiding walk is

that it tends to increase the volume of the polymer.

We begin by assuming that the Kuhn length (ξ) is 1 mer

for the GPC.  There is no loss of generality in this assump-

tion because the “lattice” can also be set to have the same

spacing as the Kuhn length so that the same boundaries

apply.  For a lattice constant different from the Kuhn length,

Equation (30) scales the lattice model accordingly since the

Kuhn length tends to freeze out the degrees of freedom of

the monomers.

The true solution must lie between these two bounds such

that

31 2 1 2 NN N N N
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where  is the adjusted Gaussian solution (Equation 23)

and  is the true solution.

According to Equation (22), q(N) should be an increasing

function of N.  To satisfy Equation (34), we choose

where Ψ is a constant, ν is an excluded volume weight, and

δ (0.5 ≤ δ ≤ 2) is the weight on the exponential function

(see App A5 and (Dawson et al., 2006)).  For the standard

GPC-model ν = 1/2 and δ ≡ 2.  When δ < 2, the weight on

N decreases, and if the system is globular, ν→1/3, this fur-

ther decreases the weight.  Setting α(Ν)=γΝ, q(N)=( ΨΝ)δν,

g(N)=exp{(ΨΝ)1-δν/(1− δν )Ψ}, h(N)=eN, w = exp(δν), and

β = ζ (γ,δ) in Equation (22), the derivative of the result (for

δν < 1)  is

where Ψ
ν
 = ξ−1(ξ/λ)1/ν, ζ(γ,δ)=[Γ(γ+3/δ)/Γ(γ+1/δ)]δ/2

(from Equation (A14)) and ξ = 1
 
mer.  The form of Equa-

tion (36) is identical to that given in Equation (A19).

When we apply Equation (29) for ξ > 1 mer, α (Ν) = γΝ / ξ
 and β=ζ(γ,δ)/ξ (where q(N), g(N), h(N)  and w  are un-

changed), we obtain the exact expression in Equation (A19)

  
which indicates that ξ is scaling the conformations (and

therefore also the entropy) by the effective mers.  Reduc-

tions to γ, particularly on the logarithmic term of Equation

(A19), would further reduce this number of conformations

from the standard GPC-model. This offers a far better de-

scription of the actual number of conformations.

The weight δ is a measure of the long range correlation

where δ =2 (Gaussian) reflects localized or independent

coupling, δ =1 (exponential) reflects diffusive coupling and

δ =1/2 (exponential square root) reflects a glassy unstruc-

tured coupling. Because the polymer chain requires real

physical length considerations in evaluating this coupling,

there is certainly a “diffusive” component in the structure in

the sense that the correlation extends over a far longer range

than would occur if the polymer chain was non-interacting.

Consequently, this reduces the number of degrees of free-

dom and independence of each effective mer. In general,

most biopolymers that we have studied so far tend to fall in

the range 1≤ δ ≤ 2 .  The parameter ν (App A) tends to be

less than 1/2 in globular proteins (Grosberg and Khokhlov,

1994) suggesting that νγδ < 1; i.e., the correlation is glassy.

By proper partitioning of this function, one could even intro-

duce a variable δ  or γ  to this problem. In addition to regions

of variable flexibility, some biopolymers are believed to have

disordered regions and globular regions as well; hence

“squeezing” offers additional options for future exploration.

In this Section, we have shown that we can “squeeze”

the correct solution between limits; the lattice model on the

one end and the GPC at the other end. The true conforma-

tion limits on folding a beta-strand back and forth can be

largely accounted for by including a weight δ on the loga-

rithmic term of Equation (36) because the solution is bounded

between the two extremes (Equation (34)). “Squeezing” is

convenient starting point for developing tractable statistical

models that considers the steric effects and long range cor-

relation contributions that are ignored in statistical Markov

chain based models (Montroll, 1950; Feller, 1968 and 1971).

Incorporating the Worm Like Chain Model into the

CLE Model

As shown in (Dawson et al., 2001a), the logarithmic func-

tion in Equation (37) represents the resistance of a polymer

to compression and the remaining function is associated with

the stretching of a polymer chain.  The stretching term is

important to comment on.

The function in Equations (36) and (37) is the generalized

treatment of the probability based on a Gamma function

The expression for g(N) is also true for δν =1. To see that it is so, one can integrate the following inequality 1/x1+ε ≤ 1/ x1-ε
  between fixed limits a to b

(a < b) and then bring b − a  arbitrarily close to zero as ε → 0. It therefore follows that when δν =1, the assembled components of the expression g(N)β

will contain the argument (ΨΝ)1-δν / (1−δν) which must approach ln(ΨΝ)as δν → 1 and this results in the Gaussian expression found in Equation (23).

It is therefore part of the same family of equations.  The equation is also true for δν >1; however, the result can even exceed the GPC model which already

overestimates the true number of conformations.  This case may be valid for denatured proteins and RNA where the solvent could become part of the

“conformations” (in effect).  This case is not considered here.
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(and its derivative). The GPC does not properly model

changes in the entropy due to stretching the chain to a point

approaching the contour length.  The solution for the worm

like chain model (Marko and Siggia, 1995)    also known

as a Porod-Kratky Chain (Flory, 1969)   weights the

stretching term (gβ(N)/ hβ(N)) with far greater accuracy.

The force response for the worm like chain is shown by

(Marko and Siggia, 1995) to be

where A is the persistence length (A≈ξb/2; (Flory, 1969)), L

is the contour length (L=Nb; Equation (A2)) and we have

used the relationship in Equation (8). Neglecting bending

and over-stretching issues of DNA (Rouzina and Bloomfield,

2001ab) etc., the entropy can be approximated by integrat-

ing the Equation (38) with respect to r, yielding

where emphasizes the “spring like” contribution to

the entropy and C is an integration constant.

Equation (38) is scaling the system to N/ξ links with a

persistence length A. The CLE model is defined by each

mer and there are ξ mers in the Kuhn length (for the usual

case where ξ >1 mer). To transform this to a mer-equiva-

lent (r
ij
) expression, we must scale Equation (39) by a weight

1/ξ.  Therefore, for a single binding pair ij;

Since there is a group of n
g
 (=ξ) binding pairs in a given link

of the chain, the entropy is unchanged when we consider

the average entropy of the group; ,

where r
g
 is the effective averaged position of the group.

The CLE model averages the contribution from each bind-

ing pair of mers ij in the group.

Let

Then Equation (39) transforms to

;

***
                                                 

From the definition of the reference state in Equation (A17),

we obtain

 

Since for large N
ij
, both 

Equation (43) quickly simplifies to

which is exactly the second expressed term of Equation

(A17).

For structure prediction problems, the stretching contri-

bution can to some extent be neglected. The Jacobson-

Stockmayer model is a prime example (Jacobson and

Stockmayer, 1950). However, if one were to consider the

same situation in which multiple points were pulled apart,

we must include the independent contributions of Equation

(43). It should be clear that the so-called “Gaussian” contri-

bution does not adequately address this issue because it al-

lows the chain to extend to infinite length. Equation (43) is

in far more reasonable agreement with the anticipated be-

havior of a real polymer when stretched out to length L.

For the case of stretching, we can also use Equation (29).

Consider a chain that is stretched from the equilibrium posi-

tion (App A2) to some significant fraction of its

contour length ρ[f] = r[f] / (Nb), where [i] refers to the initial

and [f] the final state of the system and r[i] < r(=r
[f]

)<Nb.

***In the definition of the entropy in Equation (A11), the GPC model has the limits 0 < r < . For the worm like chain model, these limits must change

to 0 < r < L.
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Using , ρ
 
= r

 
/ Nb and integrating

Equation (43) with respect to r using the states [i] and [f],

we obtain

where τ(ρ)=(3−2ρ) / (1−ρ).

We now have the means to seek an equivalent expres-

sion for stretching the GPC toward its full extension: ρ → 1.  

To define g(N) and h(N ) in Equation (29), the terms on

the right hand side of Equation (45) are integrated.  Inte-

grating with respect to N and using the substitution N=r/ (ρb)

 while holding r and b constant, this yields

(46)

and

                                                                          ( 47)

where the remaining terms are ,

α(N)=−γ N, w=e and β =1.  Equation (29) becomes

  

(48)

where r→Nb is assumed. From Equation (48), the entropic

response of a chain stretched out to its contour length from

the equilibrium position r
[i]

 is

 

(49)

where . Equation (49) yields an expres-

sion that handles stretching. As r→Nb, the dominant term

in Equation (49) is τ(r / Nb)
 
and the logarithmic term can be

basically neglected.

We have shown that we can incorporate the worm like

chain model directly into the model in a seamless fashion

and therefore drastically improve the stretching domain pre-

dictions of the CLE model.  This is because the stretching

and compression components are decoupled.  We have

therefore shown that the CLE model is not only universal; it

is highly versatile as an entropy estimation scheme for

biopolymers. Moreover, this shows that the weight of the

stretching term need not be precisely a Gaussian weight;

even an alternative constant weight is allowed because the

compression and extension components are separable.

The Virial Equation of State and the Contact

order Model

In Equation (8), we introduced the virial equation of state.

Here we examine the equation of state of an ideal polymer

in the context of the CLE model.

To tie this to familiar concepts, we first construct the equation of

state for an ideal gas. An ideal gas consists of non-interacting

particles. For such a gas, the measured parameters P, V and T

represent, respectively, the average values for the pressure, vol-

ume and temperature of a gas consisting of N gas particles. There

are so many gas particles in a normal volume that we simply can-

not measure each one; instead, we measure their average collec-

tive properties. We can say effectively that each gas particle in a

vessel occupies an average fractional volume V/N and if we leave

P free, then P depends on N, V and T. For an ideal gas, the Helmholtz

equation is F =c
v
T−Nk

B
T ln(V/V

o
), where c

v
 is the specific heat at

constant volume and V
o
 is a reference state volume.  The virial

equation of state for an ideal gas is immediately obtained

     or         .

In a similar way, using Equation (8) and referring to Fig-

ure 5, we can construct an average  and an average 

such that

where N
bp

 is the number of binding pairs (base pairs in this
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Figure 7: A comparison of the predicted minimum-free-energy secondary-structures of tRNA using the standard-model

(left) that neglects global interactions and the CLE-model (right) that incorporates them. The base-pairing thermodynamic

parameters are identical for both calculations. (a) Optimal secondary structure predictions of tRNA(phe) for E. coli. (b)

Optimal secondary structure predictions of tRNA(ala). (c) Optimal secondary structure predictions of tRNA(Ser) corre-

sponding to codon UCC. (d) Optimal secondary structure predictions of tRNA(Ser), codon AGC.
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case) and would be taken as roughly the midpoint of the

stem shown in Figure 5 and reflects the collective interac-

tion of all the base pairs forming the single stem of the folded

RNA molecule in Figure 5. Extrapolating to more complex

structures, a single domain can be defined by and the

observed behavior of the system will depend mostly on the

largest domain. Hence a biopolymer would have some

such that 

For both the ideal gas and the ideal polymer discussed

here, the contributions to P and are due to the sum of the

interactions of all the components in the system.  For the

ideal gas, this was just added up by multiplication. For the

ideal polymer, we have to sum the binding pair contributions

individually. Using the average values for , and N
bp

, the

ideal polymer equation can also be expressed in the same

form as the ideal gas.

The variable is closely connected with the contact or-

der model, where the rate determining folding time is estab-

lished by max{r
ij
} (Ivankov et al., 2003). The maximum in

the entropy is correlated with the largest value N
ij
.  This

means that the folding time of the largest domain will be the

rate limiting step. We have shown that the contact order

model is a form of the virial equation of state and therefore

expresses the average equation of state for the system.

Therefore, The CLE model has the contact order model

within its interpretation framework.

To Experimentalists

We have derived and discussed  at length  a theory

that supports modeling the coarse-grained entropy of biopoly-

mers.  We have shown that the existing models are sub-

sumed and extended under the theoretical framework of

Figure 8: Comparison of the optimal secondary structure of the Tetrahymena thermophila group I intron (the L-21 ScaI

ribozyme) using the standard-model (left) and the CLE-model (right). 
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the CLE model. Here we explain why experimentalists

should want to understand the coarse-grained entropy we

try to model.

First, the Kuhn length (ξ) is rarely mentioned in most stud-

ies of biopolymers, yet flexibility is known to be very impor-

tant in functional proteins and RNA molecules. For typical

protein structures or folded single strand RNA (ssRNA)

structures, we can assume that 3<ξ ≤10 mers.  However,

double strand RNA or DNA  (dsRNA/dsDNA) can easily

show ξ >200 mers; the very same linear sequence has two

drastically different Kuhn lengths (i.e., flexibilities).  Simi-

larly, fibrous proteins (Lehninger, 1975) like collagen (a major

component of tissue consisting of a triple helix of amino

acids) and -keratin (found in hair with an alpha helix) have

a long Kuhn length.  A short fragment of such an amino

acid sequence looks similar to many protein fragments or

peptides. Why does ξ change?

Second, aggregation is what can happen when you boil or

denature any of these biopolymers.  We also know of plaques

that form in neurodegenerative diseases.  It is actually quite

easy to produce aggregation in an amino acid sequence:

indeed, it seems more difficult to produce amino acid se-

quences that don’t easily aggregate (He et al., 2008). Per-

haps natural selection has already filtered out most of these

dysfunctional amino acid sequences from the gene pool and

what we see is a small subset of the actual possibilities.

Why is aggregation so common?

Third, we know that there are domains in folded proteins

and RNA.  These are typically of the order of 200 to 500

monomers, though some are larger. What process limits this

size?

Fourth, what are the coarse-grained differences between

protein-protein binding and protein folding?

Equation (30) reveals a large part of where these fea-

tures come from. First, for dsRNA and fibrous proteins there

are no loops.  The second term can be neglected in first

approximation. In the absence of any well defined tuning

from natural selection, the entropy cost of a functional do-

main is non-linear (Dawson et al., 2001ab)

where p
bp

 is the fraction of paired monomers in the do-

main and C(ξ) is the Kuhn length corrections contained in

the first term of Equation (30). Like C(ξ), the enthalpy tends

to be local and linear in contribution.  Moreover, the primary

contributors to the enthalpy are the statistical pairing poten-

tials (Zhang et al., 1997; Mintseris and Weng, 2003) that

only grow linearly with the presence of pairing interactions.

Hence, on the whole, it is typically far less expensive in

entropy to combine these biopolymers in fibrils than to form

complex folds. Aggregation is far easier than well ordered

and expensive structural folds. It is more economical to dock

many proteins together than to fold up a single complex

functional protein.  Indeed, according to Equation (30), it is

hardly surprising that amyloid proteins form plaques, rather,

it is surprising that they don’t.

Yet ignorance abounds.  In some biophysics meetings,

only two or maybe three people even mention persistence

length or Kuhn length.  Flexibility receives honorable men-

tioned, but its application to the design and properties of

biopolymers is essentially ignored because there is no glo-

bal concept of entropy. One can see many people who treat

the entire domain of a protein or an RNA molecule with the

same type of additive statistical pairing potential as if there

is no difference between biopolymers that fold, form fibrous

structures or dock. Occasionally, there is mention that a

global effect may confound the prediction (Zhang et al.,

1997), but that is as far as it goes. Hardly anyone seems to

find it strange that proteins can so easily aggregate. Lattice

models and worm like chains models are used on the same

protein yet no one even asks how the same protein can

have such different entropies. If we do so fallaciously on

the global coarse-grained scale, how in the world can we

expect to get the fine grained details right?

Qualitatively, the CLE model can certainly explain these

properties.  In our previous work, we have also shown that

in at least some important cases, the CLE model can quan-

titative address these issues (Dawson et al., 2007) and pro-

vide structures that are predicted at the minimum free en-

ergy. Some solutions for RNA folding are quite stable and

hardly difficult to hit on with the CLE-model. Figures 7 and

8 show some examples of the predicted minimum free en-

ergy structures for tRNA and the group I intron respec-

tively for the standard model that neglects these global con-

tributions and the CLE model that considers these interac-

tions. The local statistical-thermodynamic potentials are iden-

tical in these calculations; where we used the the Mfold 3.0

data set (Mathews et al., 1999). The standard model results

B( )  ( ) ln( )
2

bp
p Nk

S N -NC Nξ
ξ

∆    

α
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are calculated using the Vienna Package RNAfold version

1.4 and the CLE model calculations are done using vsfold5

and vsfold4 (Dawson et al., 2006; 2007). This clearly shows

that it is possible to use statistical-thermodynamic pairing

potentials and predict a minimum free energy structure that

approaches the native state structure for the RNA molecule.

For tRNA, we observed 80% success in a complete ge-

nome of RNA (Ito N, unpublished data). Preliminary pro-

tein calculations also show promise (Dawson et al., 2005).

Success is not guaranteed. For one thing, currently, there

is no way to know what the Kuhn length should be for a

particular problem, and therefore, we usually have to make

an educated guess. There are clear differences in the be-

havior of the pairing potentials such as the Mfold 2.9 data

set (Freier et al., 1986). This shows local interactions are

important in these problems too. Likewise, there are indica-

tions that the GPC formulation could use different weights

for g and h in Equation (29). Hence, what tuning should be

applied to the CLE approach is still not completely clear.

This suggests that more needs to be done with statistical

pairing potentials in the context of the global entropy. There-

fore, there is more work to be done. However, the model

has consistently offered a fighting chance and has already

shown that it can overcome many obstacles and progress

onward.

In this work, we have provided a foundation that unifies

the lattice model, the worm-like chain model, the Gaussian

polymer chain model, and the contact order model under

one framework. Clearly, each of these models has hit around

the right answer for the coarse-grained entropy of poly-

mers. This work does not solve every aspect of this prob-

lem.  Nevertheless, the method presented here is a power-

ful tool for guiding us on how to ask the right questions.
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