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Abstract

The Jacobson-Stockmayer (JS) model is used in a number of standard
programs for calculating the conformational entropy of RNA (and pro-
teins). However, it is shown in this study that, in certain limiting cases,
the current form of this model can lead to highly unphysical conclu-
sions. The origin of this behavior can be traced to misunderstandings
that occurred during the development of the model as applied to folded,
single-stranded RNA. Here we show that an alternative model known as
the cross linking entropy (CLE) model can overcome these issues. The
principal object that causes entropy loss on a global scale in the CLE
model is the stem, the primary measure of structural order in such
coarse-grained calculations. The principal objects in the JS-model are
various types of loops, and, with the exception of the hairpin loop, they
are topologically local in character. To extract experimentally measura-
ble variables, a simplified version of the CLE model is developed that
resembles many features of the contact order model used in RNA and
protein folding. These modifications are then applied to single molecule
force-extension experiments (molecular tweezers) to extract quantita-
tive information. It is further shown that a crude derivative of the CLE
model itself can be derived directly from the JS-model when the misun-
derstandings are examined and corrected.

Introduction

An important intermediate step in the ultimate goal of predicting the
3D structure of a RNA molecule from its sequence is to find information
about the arrangement of the RNA molecule’s base pairs. This arrange-
ment of base pairs (bp) indicates the general topology of the RNA mol-
ecule, which is usually defined as its secondary structure, or, when pres-
ent, its pseudoknot structure. It is essential that the topology informa-
tion is correct. Base pairing information is, in part, dependent on
achieving the correct prediction of the loop regions (Figure 1), where a
loop consists of a region of a single-stranded RNA sequence that is
closed by at least one stem (a set of base pairs, the hatched lines in
Figure 1) and consists of nucleic acid bases that are relatively free and
non-interacting due to weak non-Watson-Crick (non-WC) interactions
inside the loop region (the blue segments in Figure 1). For loops, the
Jacobson-Stockmayer (JS) equation (JS-model: see Appendix) is used
in all of the current genre of thermodynamics based RNA secondary
structure prediction approaches,1-4 some RNA pseudoknot prediction
approaches and in some of the protein topology prediction programsthat
evaluate the entropy of loops (see Appendix for a definition of the term
secondary structure as used for proteins and RNA).5-9

The JS-model was originally developed as part of an effort to predict
the fraction of ring polymer structures that would form in a condensa-
tion polymerization process.1 Condensation polymerization involves
processes like esterification of a monomer (mer) containing one alco-
hol group and one carboxylic acid group [e.g., hydroxyundecanoic acid:
HOCH2(CH2)9COOH]. Whereas mers can only join at one point, the
chemical reaction species cannot discriminate between a linear poly-
mer chain and species resulting from a single polymer chain interacting
with itself. As a result, part of the fraction would consist of ring struc-
tures (where the polymer had terminated the polymerization by closing
up on itself) and the remaining fraction would consist of a linear poly-
mer of some length that depended on concentration of monomer and
other factors. The distribution in the size of the rings was found to cor-
relate with the entropy, where the entropy was defined as a function of
the length of the loop. The loops were closed at a single point because
the chemical reactivity of the mers is restricted to two specific locations
on the monomer with only one possible reaction mechanism. 
The JS-model was later extended to any polymer that formed a loop

structure. It was soon applied to early studies of double-stranded DNA
(dsDNA) and dsRNA where multiple mismatches between sequences
lead to the formation of interior loops that were closed by the mutual
base pairing interaction between the independent DNA/RNA chains.10-15

This approach continues to be successfully applied to this day.16-18

Although the forces that cause loop formation in the dsDNA or dsRNA
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structures arise from mere stacking interactions, collectively, they are
often sufficient to maintain stable loop conformations. It was found that
these loops could be roughly calibrated with the size and number of
loops in the dsDNA or dsRNA structures and, therefore, could be evalu-
ated as local free energy corrections. 
Owing to the success of this approach, it was assumed that this could

be applied in the same way in single-stranded DNA (ssDNA) and ssRNA
structures that were folded in a similar way (locally dsRNA but resulting
from a ssRNA sequence that folds back on itself with at least one hair-
pin loop).19-21 For simple stem loops, this appeared to work. Along simi-
lar lines of reasoning, it has also been used to evaluate the free energy
of turns in proteins.8,9

However, although the current (in silico) strategy of capping one end
of a double-stranded DNA (or RNA) structure with a hairpin produces
apparently superficial similarities between a dsDNA (or dsRNA) structure
with mismatches in the base pairing, there is, in fact, no reason to
assume that double strand and single strand interactions are universally
the same with the exception of a few terminating hairpin loops capping
the double strand architecture in the single strand cases. For one thing,
although dsDNA can form a double helix that is four billion base pairs
long in the human genome, a similar length for folded ssDNA or ssRNA
has not been observed. Furthermore, the difference in energy between
the predicted optimal structure and the observed structure can sometimes
exceed 20 kcal/mol,22 suggesting that the observed native state is
metastable and quite far from thermodynamic equilibrium. Experi -
mentally, growing single crystal samples of biomolecules in metastable
conformations is usually a very difficult task. Some of these predicted
structures do not involve particularly long sequences and, therefore,
should be able to reach the optimal conformation within a few seconds.
Yet it takes months to grow crystals and, most of the time, the crystal that
grows is the one that is the most thermodynamically stable. Hence, valid
or not, there is reason to question the conclusions that result from
employing the JS-model in these folded ssRNA (or ssDNA) calculation
approaches.
In previous work, we have introduced a new entropy model for calculat-

ing biopolymers, which we named the cross linking entropy (CLE)
model.23-28 In the first part of this Series, we examine the use of the stan-

dard entropy model that is based on the Jacobson-Stockmayer equation.1

The objective is to look at the subtle role of this long range entropy effect
that arises in polymers and to show why it is a misconception to equate the
entropy evaluation of interactions between two independent strands in
dsRNA structures with apparently similar single-stranded RNA secondary
structure and likewise for other polymers such as dsDNA and protein
topologies. Further, the objective is to show that the CLE model can be used
to overcome these issues and provide a robust thermodynamics that can be
applied to various experimental problems including manipulation of single
RNA molecules using optical tweezers.29 We find that the CLE model yields
a consistent picture with quantitative results that are less sensitive to
small differences in base pairing parameters or the particular sequence.
Finally, we show that a type of CLE model could be anticipated from the JS-
model once these misconceptions are removed. The focus is mainly on
RNA secondary structure where the JS-model has been used with consid-
erable success in the development of prediction algorithms that employ
thermodynamic evaluation methods.2-4 To understand the presentation in
this work, the reader needs to be familiar with the basic concept of the
Gaussian polymer chain (GPC),30,31 the CLE model,23-28 and the basic con-
cepts of the thermodynamics of RNA secondary structure calculations.32-38

The standard model: the loop penalty model
(LP-model) 

To this day, in RNA/DNA structure prediction, the entropy-loss due to
folding is evaluated by a topologically local function derived from the JS-
equation (1) (see also Appendix)

DS(n)=–AJS–gkBln(nL) (1)

where AJS is a fitted constant, kB is the Boltzmann constant (1.9872
cal/molK) and g(=1.75) is a weight parameter that approximates the sta-
tistical characteristics of a self-avoiding random-walk where the walker
must avoid points that have already been crossed in previous steps.39 For
hairpin loops (H-loops: Figure 1A, blue region), AJS is approximately 10
cal/molK and nL=j - i - 1 is the enclosed, free single strand sequence length
between bases i and jwith i<j (Figure 1A). The value of AJS in hairpin loops
varies with the implementation of the Turner energy rules in various RNA
secondary structure prediction programs.35,37 In the GCG package, AJS is
10.6 cal/molK in the e98 set, and 9.74 cal/molK in the e99 set.32 For the
Vienna package (1.4 parameter set)4,40 and mfold 3.0,35 AJS is 12.9 cal/molK.
The latter value is based largely on Serra et al.41 In essence, AJS is about a
factor of 5 larger than the Boltzmann constant.
For bulges nL=j - i - 1 (Figure 1B, blue region), and, for interior loops

(I-loops) nL=nL1+nL2, where nL1= p - i - 1 and nL2=j - q - 1 (Figure 1C, blue
region). Bulges and I-loops also have a fitted value for AJS that is of sim-
ilar magnitude to the H-loop value. For multibranch loops (MBLs), an
approximation is used

(2)

where C0, C1, and C2 are all fitted parameters, nLi is the length of the
free-strand segments of the MBL (Figure 1D, blue region), and nbr is the
number of branches. Branches consist of the stems that extend off from
the MBL (Figure 1D).
Models conforming to Equations (1) and (2) assign penalties as a func-

tion of the total length of the free-strand segments enclosed by a given loop
and by the type of loop that is formed. These free strand segments corre-

Article

Figure 1. Examples of secondary structure and the corresponding
notations. (A) A simple hairpin loop (H-loop), (B) a bulge, (C) a
interior loop (I-loop), (D) a multibranch loop (MBL). The param-
eters nL, nLj and nLi refer to the length of the free strand (blue) in
a given loop. The stems are indicated by the red bars and black
cross hatches. Base pairs and dinucleotide base pairs in the stem
are marked in the Figure with the light blue circles. A distinction
is made in this figure between free strand located in a loop region
(blue) and free strand that has no loop associated with it (green).
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spond to the enclosed blue regions of the different types of loops shown in
Figure 1A-D. The structures are topologically local because their entropy
only depends on this free strand length in the immediate vicinity. Because
the loop structures are considered isolated, they can be assigned penalties
without taking into account any of the long range structure within the
sequence the loop closes. Exceptions such as kissing loops are in principle
admissible examples of long range tertiary structure; however, in general,
even these are treated as though the interaction can be decomposed into
two local penalties: one for each of the independent loops. We therefore
call this approach the loop penalty model (LP-model). 
In the LP-model, the penalties are combined with another topological-

ly local base pairing free energy.42,43 Evaluation of base pairing free ener-
gies usually consists of examining a lookup table of entropy and
enthalpy terms for dinucleotide pairs (Figure 1) and evaluating the free
energy (FE) for a given temperature,32,35,37

DGbp(T)=DHbp–TDSbp (3)

where T is the temperature, and DGbp(T), DHbp and DSbp correspond to
the FE, enthalpy and entropy of the base pairs, respectively. Supposing,
for example, one were evaluating the sequence GGAGUAAUGUCC, then
the underlined region would correspond to an H-loop (Figure 1A) and
the bp sequence

would correspond to the stem region. The loop would be assigned the FE of
a H-loop of length nL=6; typically with some corrections for the closing bp

(which is in this example)

and sometimes other sequence related issues. Other structures such as
bulges (Figure 1B), I-loops (Figure 1C) or multibranch loops (Figure
1D), would be handled similarly according to Equations (1) or (2),
respectively. The stem region of folded single-stranded RNA (ssRNA)
has the same physical geometry as an equivalent sequence of dsRNA.
Therefore, it is logical to assume that they are identical. It follows that
the topologically local base pairing terms would be assigned free ener-
gies corresponding to the particular dinucleotide pairs

( and  )

and, when present, the FE evaluation would also include a single base
or the first pair of non-WC bases that terminate the stem. 
In the LP-model, both the loop terms and the base pairing terms are

assigned according to the local environment regardless of where they
are in the structure, only the local sequence relationships are assumed
to require corrections. The FE is calculated by adding together these
local dinucleotide bp contributions and the different local loop contribu-
tions that are assigned to the structure.
Protein structure models that utilize the JS-equation use reasoning

identical to the LP-model used to calculate RNA secondary structure and
sometimes neglect AJS.8,9 Typically, the JS-model is only applied to H-
loops, so the model is not as general as the RNA structure model. 

Inspecting the standard (loop penalty) model

In this Section, we look at limiting cases of the JS-model where the
calculations can render some surprising conclusions. The examples are
meant to illustrate some of the pitfalls that can occur and are by no
means the only cases where such unexpected behavior can occur. We

first consider RNA in a little more detail, and generalize the point to pro-
teins where the JS-model is also used.

The loop penalty-model with RNA
For RNA, the base stacking FEs and loop penalty FEs are constant for

a given temperature. One need only calculate these values once for a
given temperature and then build a lookup table to calculate them for a
particular structure.

Suppose we construct the following sequence; A100CCCCU100. Suppose

further that we measure this sequence at exactly the melting tempera-

ture (Tm) where [kcal/mol], Equation (3). For this AU

pairing, the corresponding enthalpy and entropy of base-pair stacking

are [kcal/mol] and [kcal/molK], respec-

tively.35,44 Then K (86°C). There is also a small

correction for the terminal AU: [kcal/mol] and

[kcal/molK], . However, since this con-

tribution cancels at Tm we can neglect this interaction. 
From this simple pattern, we can write the main contributions to this

model as 

(4)

where nbp is the number of base pairs and we assume a single value FE
( ) for each bp. The first group of terms on the right-hand side
corresponds to Equation (3) with a contiguous set of AU dinucleotide bps 

(5)

and the last group of terms on the right hand side of Equation (4) com-
prises Equation (1) and is the FE contribution to the loop penalty for a
H-loop of length nL

DGL(nL,T)=–TDSL(nL,T)=T(AJS+gkBln(nL)).

Hence,

. (6)

Article

Figure 2. Examples of configurations for an RNA molecule form-
ing a hairpin loop. At ambient temperatures, the structures shown
would correspond to the following sequences: (A) A100C4U100, (B)
A15C174U15 and (C) C85A15C4U15C85. At the melting temperature
(Tm), none of these structures would be stable and these conforma-
tions would represent structures of low statistical weight in ther-
modynamic equilibrium with the coil structure (consisting of
many random configurations of much higher statistical weight).
During melting of structure (A), structures (B) and (C) would rep-
resent partially unfolded structures. In principle, the structures
could be constrained to any of these configurations at Tm and the
response measured, if so desired. Free strand in the loop regions is
indicated by the blue, and free strand outside the loop (C), is indi-
cated by the green. 
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Equation (5) contains both large entropy and enthalpy terms, but they
exactly cancel each other at Tm such that

. This permits us to isolate the entropy
loss (due to folding) of A100C4U100 from the contributions due to base
stacking. 
At face value, Figure 2A through 2C all represent possible but short lived

and highly improbable conformations of A100C4U100 at Tm. Their improbabil-
ity is a function of the entropy loss (due to folding). Nevertheless, though
naturally improbable, in principle, one could apply external forces (clamps)
that constrain these structures and would expect to observe a measurable
response to these constraints. Since entropy measures the direction the
system should go, the expected entropy loss should be such that -TmDS(Figure
2A)>-TmDS(Figure 2B) because there is more configurational order and restric-
tion in Figure 2A, where the reader should notice the very long tail of the
dsRNA helix that is not present in Figures 2B or 2C. 
For AU bps, the LP-model data must be recalibrated to Tm by a weight

Tm /T37=359/310 ≈ 1.16, where T37 is the temperature at 37°C. Since
there are several versions of the hairpin loop penalties from different
sources that differ substantially including a recent parameter set,45 we
simply adopt the values quoted in Table 6 of Matthews et al.35 without
the additional corrections. In particular, we neglect the oligo(C) correc-
tions for the following reasons: i) There is no obvious way to account for
oligo(C) when comparing the same sequence in different conforma-
tions. For example, does this correction apply to loops -ACCCCU- or -
AACCCCUU- and if not, what rules do we use to model this correction?
ii) These corrections are only used in some implementations of the LP-
model. iii) The authors of the original study expressed some reserva-

tions about this observation. Nevertheless, we acknowledge that poly(C)
loop structures are rarely observed and, therefore, perhaps this is
because of unfavorable loop contributions.
Adopting a different implementation will not ultimately change the

conclusion. From Matthews et al.,35 for nL>9 nt, 

DGL(nL,Tm) ≈ (Tm/T37){6.4+1.75kBT37ln(nL/9)} (7)

Then, using the lookup table for nL≤9 (at T37), for nL=4 nt (at 86°C), 

DGL(nL=4,Tm) ≈ (1.16)(5.6) ≈ 6.5 kcal/mol. 

Likewise, using Equation (7)�for nL=174 nt (at 86°C), 

DGL(nL=174,Tm) ≈ (1.16)(9.6)=11.1 kcal/mol. 

Yet

DGL(174,Tm)[=–TmDS(Figure 2B)]>DGL(4,Tm)[–TmDS(Figure 2A)]. (8)

This result is unphysical. 
Whereas it is true that all configurations are possible, this does not

mean that Figure 2A is more probable than Figure 2B. The JS-model is
predicting that the structure in Figure 2A has the same entropy loss as
the structure in Figure 2C. The entire long tail in Figure 2A contributes
no observable entropy loss at Tm except for the LP contribution associ-
ate with the loop of length nL=4 nt; even if the RNA sequence were
somehow constrained to the configuration in Figure 2A by external
forces. 
It is pertinent here to comment that the original experiments, on which

the LP-model is based, were done measuring stems of essentially identi-
cal lengths.41,46-48 Most of these measurements were carried out on
sequences of the form , where forms the stem
with , X and Y consist of a selected pair of
non-WC bases, and Nn indicates any number 3≤n<8 of unspecified bases.
This approach essentially corresponds to measuring Tm for the structures
in Figure 2B and 2C (i.e., stems of the same length). Hence, the JS-model
is consistent with the experimental observations in these conditions.
However, Figure 2A and 2B do not have the same stem lengths. At Tm, the
LP-model cannot differentiate between a structure with a stem length of
Figure 2A and that of Figure 2B (or Figure 2C) in the model conditions
currently specified, because the LP-model only assumes a local base-pair
free energy. The LP-model base stacking is a highly local phenomenon
that can only occur when the bases are in close proximity. Granted, after
separating, some stacking can occur on a single chain (particularly
poly(A)49); however, these corrections are not accounted for in the LP-
model. Moreover, corrections for any such details are independent of the
stacking free energy and, at most, influence the Kuhn length; a
measure of the stiffness of a polymer and typically short in single-strand-
ed RNA: about 5 nt for poly(A) and 3 nt for poly(U).27,28 The Kuhn length
is not an explicit property used in evaluating the loop penalty model
either. Because these uncertainties are largely local in character, they are
not likely in most cases to overcome the global issues discussed here.
Therefore, applying the above specified conditions, we are permitted

(by the definitions) to examine the behavior of the loop penalty model
in isolation from base stacking rules without claims to anything other
than what is explicitly in these equations.
More important is the direction. The difference in the free energy is 

DGL(4,Tm)–DGL(174,Tm)=6.5–11.1=–4.6 Kcal/mol (9)

Article

Figure 3. Examples of Figure 2 as applied to proteins. Here, the
topology of two types of protein secondary structure is shown: (A-
C) various beta-strand topologies and (C-F) various alpha-helix
topologies. In principle, just as in Figure 2, at Tm, the structures
could be constrained to any of these configurations if we so
desired. Without constraints, they would represent structures of
low statistical weight in thermodynamic equilibrium. Free strand
in the loop regions is indicated by the blue-green, and free strand
outside the loop regions in (C) and (F), is indicated by the green. 
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and because this is negative, the direction is toward Figure 2A and away
from Figure 2B even though the latter should have less structural order.
In thermodynamics, all pathways are equally possible. Though the ther-
modynamic probability is small that the RNA should fold first from the
5’ and 3’ ends (as in Figure 2B) and work backwards until an entire
stem is formed in the shape of Figure 2A, this pathway is possible. If we
work basepair-by-basepair to nL=4 or in chunks nL=174→164 …→4,
the difference in the free energy [as in Equation (9)] is always nega-
tive. In other words, although both are configurations of low statistical
weight, the LP-model predicts that we should encounter Figure 2A for
A100C4U100 far more frequently than Figure 2B and the system will move
away from Figure 2B toward Figure 2A. Furthermore, the only criteria
for deciding the entropy loss is the size of the H-loop, so both Figures 2A
and 2C have the same entropy loss.

The loop penalty-model for proteins
Protein structure predictions using the LP-model use a similar

expression as Equation (1).8,9

In proteins, the same fundamental principles for loops closed by par-
allel β-strands (Figures 3A-C) or α-helices (Figure 3D-F) also apply.50

For proteins, the equation describing the binding of the analogous dou-
ble-stranded RNA structure would be applied to β-keratin for long paral-
lel wound β-strands and to α-keratin for long wound α-helices.51 The
attractive interactions of α- and β-keratin will be more complex in the
temperature dependence due to a complex interplay of hydrophobic and
electrostatic interactions. Nevertheless, such sequences tend to be
repetitive enough that an expression like Equation (5) could be con-
structed.
For a folded structure as in Figure 3A, long β-sheets are also seen in

such structures as beta-barrels and these can certainly reach lengths of
20 amino acids. We can therefore propose to borrow a fragment of such
a structure as a tangible example for this discussion. For α-helices,
helix-helix interactions in loops like that in cytochrome C are in princi-
ple constructible and could join as shown in Figure 3D.52-55 Hence, we
can propose that there exists an amino acid sequence that satisfies the
formation of a turn in which the β-stands bind into a β-sheet (Figure
3A).52,53,56,57 Similarly, we can construct a turn that permits two alpha-
helices to associate in a way similar to the beta strands (Figure 3D), for
example, in the structure of cytochrome C.
Like in the case of RNA, for proteins, the same rules must apply and

the entropy-loss must be evaluated in the same way. We can propose
some temperature Tm where the attractive interactions between the β-
strand (Figure 3A) or α-helices (Figure 3D) become too weak to hold
the structure together and the neighboring β-strands (or α-helices) can
dissociate. It would likely require a rather highly contrived sequence to
generate a structure with a single value Tm. Nevertheless, given one
indulged in the effort to find such structures, surely at least one such
protein sequence exists that generates a structure that conforms to
Figure 3A (for β-strand) and similarly to Figure 3D (for α-helices). In
turn, the same type of conditions used for the RNA (i.e.,
that ) can be applied to dissociate the
two chains in a well designed protein structure. Further, because the
structures are in thermodynamic equilibrium, Figure 3B and 3C for β-
strands also exist and, likewise, Figure 3E and 3F also exist for α-
helices. At Tm, Figure 3A and 3D should be the most improbable of the
examples. 
For β-strands, we are, in principle, permitted to construct some

device to constrain the β-strands to Figure 3A or Figure 3C and measure
the response. If the LP-model is true, the energy required to constrain
the structure in a form resembling Figure 3A is equal to that required to

constrain the structure in a form resembling Figure 3C. Likewise, for α-
helices, the constraining energy should be the same for Figure 3D and
3F. Because this is measured at Tm, the entropy for forming the second-
ary structure (the β-strands or α-helices) is zero.

Deducing a perpetual motion machine from the
model (Deducens machinam in perpetuum
moventem ex exemplari)

The purpose of this section is to show that the unphysical outcomes
that were found in limiting cases are not always inconsequential. Such
behavior can directly affect the quality of prediction even for standard
problems where the LP-model usually behaves properly. 
In the previous Section, we found that neglecting the global contri-

bution to the base-pairing entropy results in an unphysical response.
Since the phenomenon does not employ any stacking whatsoever, this
property should also work for non-WC sequences such as poly(A).
Although extended structures are rare in nature, poly(A) can bind
through interaction of Hoogsteen pairing along the back side of the
nucleic acid base and, at low enough temperatures, should even be
observable from its optical properties.58,59 This would permit us to
remove all temperature considerations from the calculations and run
this experiment independent of temperature from above freezing to
where the sample degrades. 
This unphysical tendency (were it true) could be used to violate the

second law of thermodynamics. We biotinylate the 5’ and 3’-ends of the
sequence A204 (poly(A)) and force the 5’ and 3’-ends toward each other
using a direct manipulation approach like optical tweezers on the sys-
tem.29 Using a squeezing strategy to manipulate the 5’ and 3’ ends,
Equation (9) predicts that 

DGL((nL=4),T)–DGL((nL>>4),T)<0

Therefore, the structure can (at the very least) spontaneously col-
lapse into the highly ordered stem-loop structure in Figure 2A if we do
work greater than DGL(4,T37)=5.6 kcal/mol (at 37°C) on the system,
where nL=4 is the minimum allowed loop size and DGL(4,T37) is the
approximate FE penalty (at 37°C). It is spontaneous because the differ-
ence in the FE is negative: DGL(4,T37) - DGL(174,T37)=5.6 -9.6=-4.0
kcal/mol, where the LP-model predicts that the structure with the long
tail in Figure 2A has less configurational entropy loss than Figure 2B.
Whether we work with standard Watson-Crick pairs at melting temper-
atures or non-WC pairing where we can ignore melting temperatures,
the LP-model sees Figure 2A as a case where we need only supply an
external force sufficient to produce Figure 2C, and entropy will drive the
structure to Figure 1A. Since there is no particular binding from the
base pairs for poly(A), now we simply release our applied force, and the
structure expands to its equilibrium structure doing DGL(174)(T37) ≈ 9.6
kcal/mol of work. This is because i) we biotinylated the 5’ and 3’ ends so
the structure will do work against that and ii) the difference between the
entropy-loss of the structure in Figure 2B [- AJS -kBgln(174)] and the
denatured structure (0, set by definition) is then DGL(174). These were
the definitions. This means we gained 4.0 kcal/mol of excess work that
we can extract to do additional useful work.
Although we have constructed a rather artificial test of the LP-model,

which was not intended in the original conception, this in not simply a
matter of esoteric and abstruse curiosity. Because this tendency is built
into the thermodynamics of the LP-model, it is easy to find examples of
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predictions using the LP-model that have features of Figure 2A: i.e., the
straight stem structures are significantly over predicted. 
Figures 4A-D show examples of 5S ribosomal RNA (5S rRNA) with a

similar sequence homology obtained from a BLAST search and aligned
using ClustalW2 (Figure 5). Three of the four structures predicted by
the LP-model (using the Vienna Package 1.4 implementation) show a
reasonable portion of the Y-shaped feature of 5S rRNA; however, the
structure in Figure 4D shows a tendency toward Figure 2A. Results from
vsfold5 (an implementation of the CLE model) are shown on the right
hand side. This is quite general. For example, it is not so infrequent to
encounter predictions like Figure 2A in fitting tRNA structures using
the LP-model (e.g., Figure 7 of Dawson et al.).25

Figure 4E shows a fit of the HIV-1 virus in the first 833 nt of the
sequence. The LP-model finds only a few of the well-established HIV-1
structures when asked to fit this very long sequence and the fit closes
the structure in straight stems near the 5’ and 3’ ends quashing the Tar
region and other known features (again resembling features of Figure
2A). Vsfold5 finds many of the well known structural features of HIV-
1,60,61 even though the fit is artificially constrained to only one Kuhn
length for the entire sequence. A second fit of the most poorly matched
regions is shown at the bottom of Figure 4E and captures most of the
critical features of the DIS and PBS regions of the sequence. The exper-
imentally obtained reactivity data using Me2SO4 (A(N1),C(N3), red cir-
cles) is also indicated in this second fit.
It is certainly recognized that the LP-model has been instrumental in

finding important structures in HIV-1 and other important RNA mole-
cules. The point of these examples in Figure 4 is to show that the ten-
dency to predict structures like Figure 2A is not all that uncommon with
the LP-model, even for short sequences (Figure 4D), and the effect
works very much against the LP-model as the sequence length gets
longer (Figure 4E). The predictions in the LP-model are also more
unstable, because the sequences in Figure 4A-D all have a fair degree of
sequence homology (at least 91%, see alignments in Figure 5), yet the
structures can vary all the way from the expected 5S rRNA structure
(Figure 4A-C) to a structure closer to Figure 2A (Figure 4D). 
Using vsfold5, a trial fit yields a Y shape using x =10 nt for the struc-

tures in Figure 4A-C or x =12 nt in Figure 4D, where the option -xi_min
3 is used to increase the resolution of the stem regions. In all the results,
the right-hand branch was exceptionally difficult to fit correctly. The fit
was achieved by increasing the scanning distance option to -cc_dist 9 so
that the large (highly symmetric) loop region was treated as a partially
interacting stem. Invoking the Mg2+ option was also successful for the
structures in Figure 4A and 4B. These results show that the large loop in
the right branch is stabilized by weak binding between the chains and
that stem-like structure extends within the large loop region. This can be
seen in the actual 3D structure of 5S rRNA (e.g., the protein data bank
structure 1C2X). Although not a regular helix, the RNA chains run paral-
lel. The chain-chain interaction is likely supported by the fair number of
purine bases in this loop region, particularly since the Mg2+ option was
successful in some cases. Therefore, whereas the LP-model tends to do
better on this right hand branch (when it does work), the real merit of the
CLE model is that it can provide information about the stiffness and the
long-range ordering within this branch and it provides this information
consistently. If the CLE model costs some effort in thinking, it also can
reward the user with some insights about the RNA under study.
For vsfold5, most of the failures in Figure 4 are a consequence of the

implementation: inadequate stem analysis methods and the rigid evalu-
ation using a single Kuhn length. In particular, when the least accurate
region of HIV-1 is refit with a smaller Kuhn length in Figure 4E, the
expected structure is recovered.61 In some instances, the CLE model is

Article

Figure 4. A comparison of structures predicted using the LP-model
(left) and the CLE (right). The CLE results are calculated using the
vsfold5 implementation. From (A) to (D), four homologous struc-
tures of 5S rRNA with at least 91% homology are shown fitted side
by side. Neither the LP- nor the CLE-implementation predicts these
structures perfectly; however, vsfold5 predicts the Y shape for all four
structures, and the LP-model predicts at least one structure corre-
sponding to Figure 2A. E) An example of a much longer subse-
quence of HIV-1 (positions 1 to 833). With this longer sequence, the
LP-model is more prone to predict a structure corresponding large-
ly to Figure 2A. For this whole sequence, one Kuhn length was used
with vsfold5. Many of the known features of HIV-1 can be found in
this prediction.60,61 Refitting the PBS/DIS region with a smaller
Kuhn length (bottom) yields most of the correct structure of this
region. This indicates that the PBS/DIS region is more flexible than
the Tar/Poly(A) region. The red markings indicate experimentally
observed probing with Me2SO4 and the corresponding points of
reactivity (A(N1), C(N3)), as reported in Reference 61. Additional
markings show the general structure of the whole 5’ long terminal
repeat region and interaction regions with enhancers and core fac-
tors: from http://www.hiv.lanl.gov/content/index . 

A

B

C

D

E

Non
-co

mmerc
ial

 us
e o

nly



[page 24] [Journal of Nucleic Acids Investigation 2012; 3:e3]

also hampered by inadequate or nonexistent experimental information. 
In the Sections that follow, we will show further merits of the CLE

model in that it offers a more complete thermodynamic analysis method
that is applicable to molecular tweezers experiments. In Part III of this
Series, we will show some aspects of the folding landscape in the CLE
model, its ability to analyze two state molecular switching devices
known as riboswitches, and how to estimate the maximum domain size
of RNA quantitatively.

Comparing the loop penalty- and cross linking
entropy- models: the Carnot engine

Here, we apply the CLE model to general problems of heat engines.
We show its behavior in a Carnot cycle and test the model in the context
of recent molecular tweezers experiments. 

The Pressure vs Volume-diagram for the ideal gas
To put this in a context that is probably more familiar to readers, we

first review the equations for the ideal gas. 
The ideal gas equation of state has the form

pintV=nRT (10)

where pint is the internal pressure of a gas inside a vessel, V is the cor-
responding volume, n is the number of moles, R (1.9872 cal/molK) is the
universal gas constant, and T is the temperature. Because the units
often used in these problems involve kcal/mol, the values of kB and R
turn out to be the same. In other common units, kB =1.3806488¥10-23

[J/K] and the gas constant R=8.314462 [J/molK], from NIST
(http://physics.nist.gov/cuu/Constants/index.html).
When the gas expands against an external pressure, it does positive

work if the resulting volume is greater than the initial. Presumably, heat
has entered the system to help the gas expand against the external pres-
sure. This is referred to as work done by the system (the gas inside the
vessel) and the differential change in the work done is dW=-pintdV.62 In
experimental setups, it is often more convenient to measure the exter-
nal pressure (pext); sometimes referred to as the work done on the sys-
tem. In such cases, the direction of sign is opposite to the direction that
the gas (in the system) expands and therefore the work done by the sys-
tem should be expressed dW=-pintdV. Although there is merit to express-

ing the problem from the perspective of how the experiment is done,
here we want the frame of reference to be the system itself, not the
means of probing it. Readers who are more accustomed to the alterna-
tive way of writing these equations should read (pint)=(-pext) for pres-
sure and, W=–∫pextdV=∫pintdV for work. 
The heat flow is dq=dU+dW, where dU is the change in internal ener-

gy. The heat flow is defined as positive when heat flows into the system
(i.e., the gas inside the vessel expands) and negative when it flows out
(the gas inside contracts). For a reversible thermodynamic process, the
heat flow can be expressed in terms of the entropy, TdS=dU+dW. In gen-
eral, the properties of an ideal gas should satisfy the conditions of
reversible processes. Therefore, the heat flow for the ideal gas becomes 

TdS=dU+pintdV. (11)

The work done by an ideal gas (i.e., by the system) during isothermal
expansion or contraction (dT=0) is 

. (12)

During an adiabatic expansion or contraction process of the ideal gas
(TdS=0), we have

(13)

where cv is the specific heat at constant volume. Integrating and rear-
ranging, 

cvln(T2/T1)=–Rln(V2/V1) (14)

which yields the familiar expression

T2(V2)η–1=T1(V1)η–1 (15)

where η=cp/cv. For the ideal gas, Equation (10) can be derived from the
Helmholtz free energy

or  (16)

Thermodynamic equations for an ideal polymer
The equations for a polymer carry a similar form with the transforma-

tion pint →fint and V→r, where r is the distance that separates the ends
of the polymer chain and fint is the force (intrinsic to the system) acting
at the ends. Traditionally, this expression is written in terms of the
means of measurement (fext(rext)). Presently, our interest is in under-
standing the polymer itself, so we explicitly write fint (r). Readers accus-
tomed to the traditional form should read fint(r)=(-fint(r)). Unlike a gas
where the volume of the vessel can be fairly accurately known, an exper-
iment involving molecular tweezers has multiple interfaces between the
device and the actual system being measured (e.g., the beads and the
lever arms).29,63-65 Nevertheless, we currently want the frame of refer-
ence to be the system itself, not the means of probing it. Therefore, r will
be understood as rint, even though the measured parameter is actually
rext and corrections are inevitably required to interpret rint based upon
measurements obtained from rext. 
Like the ideal gas, the equation of state for the GPC can be obtainable

from the Helmholtz free energy, 

(17)

Article

Figure 5. Sequence alignment for 5S rRNA structures shown in
Figure 4A-D. Sequences were initially obtained through a Blast
search, aligned using ClustalW for DNA sequences and pruned of
sequences that were either redundant or incomplete.
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and for the ideal polymer, the equation of state is

(18)

where g is defined in Equation (1), b is the monomer-to-monomer sep-
aration distance, N is the number of monomers (mers) in the polymer
sequence, αN groups the prefactor terms as a function of N and x is a
parameter known as the Kuhn length and is a measure of how coarse-
grained the system is relative to the mer size. 
The Kuhn length indicates the scale of the system, where almost

always x >1, the effective mer size becomes x b, and the number of
effective mers becomes N/x . This scaling (x ) means not only that the
monomers become effective mers, it means that the number of bps
(cross links) become effective cross links. How to implement this
entropy model will be the subject of Parts II and III. Here, it need only be
understood that we are dealing with effective cross links.
When g=1, Equation (18) yields the historic Gaussian polymer chain

(GPC).30,31

The minimum of Equation (18) is at r=Rs=(g /αN)1/2 and it represents
the point where the sign changes for fint (r) : fint (r)>0 for r<(g /αN)1/2

and fint (r)<0 for r>(g /αN)1/2. The root mean square (rms) value of r is
obtained by evaluating the second moment of a given probability distri-
bution function of the polymer: 

where Ω(r) is the weight function for a given probability density function.
Following the definitions and procedures for constructing thermodynam-

ics potentials as outlined in Sears et al.,62 Equation (11) transforms to 

TdS=dU+fintdr (19)

where dU=crdT is the internal energy of the polymer and cr is the specif-
ic heat at constant end-to-end separation distance of the polymer; anal-
ogous to the specific heat at constant volume for an ideal gas (cv). Early
experiments on the stretching of rubber31,66,67 revealed that the internal
energy of the polymer was negligible (less than 10% for stretching up to
3 times the initial length of the rubber).66 The experiments did not test
polymer compression; nevertheless, for good reason, the elastic proper-
ties of typical polymers like rubber are largely attributed to entropic
effects arising from fint.31,66

Using the relation fint(r,T)=T(∂S(r,T)/∂r)T, where (…)T indicates
evaluation at constant temperature, the corresponding expression for
the work done in Equation (12) becomes

, (20)

where r1 and r2 refer to the measured end-to-end separation distance in
different states of the system. Similar equations to Equations (13) and
(14) are obtained for adadiabatic expansion or contraction of the polymer 

, (21)

and this in turn leads to 

(22)

where T1 and r1 refer to one state of the system and T2 and r2 refer to
another state. 

The Carnot cycle for a polymer with a single cross link
From Dawson et al.,24,25 the cross linking entropy (CLE) equation is

(23)

where So is a constant, ζ=g+1/2 and CgζN=2(ζ/x N)ζ/G(ζ). (The various
parameters in Equation (23) are explained in further detail within
Dawson et al.).23-25 Evaluation of Equation (18) using Equation (20) with
fint (r, T)=T(∂S(r,T)/∂ r)T yields Equation (23) to within a constant. The
maximum entropy occurs at S(Rs), where all other values are smaller. 
The work done in Equation (20) during an isothermal process

becomes

, (24)

and the change in temperature and separation distance (r=rint) during
an adiabatic process becomes 

(25)

The right hand side of Equation (25) can be modified to the following
form

(26)

where

(27)

and we obtain an expression resembling Equation (15)

, with  (28)

In general, the parameters r1 and r2 in Equations (24) and (25) corre-
spond to states in thermodynamic equilibrium. Assuming r1>r2 for the
given polymer, this would usually be a denatured state (r12=x Nb2) and
a bound state r2>rb.
To gain a graphical picture of the force, extension, temperature and

entropy (heat flow), the force-extension is shown in Figure 6A for two
temperatures in a Carnot cycle, a cycle comprising isothermal and adi-
abatic processes.62 Figure 6B shows the corresponding entropy for the
force-extension in Figure 6A. Figure 6C is an entropy-temperature
diagram of the processes shown in Figures 6A and 6B. Suppose we
start from state a in Figure 6A, and run through the following cyclic
process
•� a-b: (reversible) isothermal contraction ra>rb at constant temperature
on the Tab isotherm. In the subsequent exposition, the variable b (ital-
ics) denotes the mer-to-mer separation distance (a constant) and
should not to be conflated with the thermodynamic state that is
labeled b (i.e., without italics).

•� b-c: (reversible) adiabatic contraction rb>rc with temperature change
Tcd>Tab. 

•� c-d: (reversible) isothermal expansion rd>rc at constant temperature
on the Tcd isotherm.

•� d-a: (reversible) adiabatic expansion ra>rd with temperature change
Tcd>Tab. 
For simplicity, we assume that any internal binding forces are all

located at the two ends of the polymer chain. However, there is no loss
in generality in assuming a sub-section of the polymer chain from posi-
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tion i and j, where j>i, Nij=j – i+l and r=rij (=rij,int) describes the rela-
tive separation distance between mers i and j. 
Tracing the Carnot cycle in Figure 6, from Equation (24), the path

going from state a→b on isotherm Tab (Figure 6B, red curve) the work
done is

(29a)

where, because ra>rb (and fintdr<0 in this region), heat flows out of the
system during this process (Figure 6C, red line). At this stage, any inter-
nal local binding forces will do negative work on the polymer chain
pulling the ends together. 

From Equation (25), the adiabatic transition from b→c results in a
temperature change Tab→Tcd with Tcd>Tab (Figure 6B, green curve)

, (29b) 

In the process, the system heats up (Figure 6C, green line). For the
process a→b→c, internal binding interactions would be needed to over-
come the repulsive response of the polymer chain. More work is done
because rb>rc and fint≠0. For small DT=Tcd - Tab, this is approximately

.

Article

Figure 6. An analysis of the force and the entropy for a cyclical
process expressed in terms of the end-to-end distance, tempera-
ture, or force-extension. A) and B) show the internal force (as seen
by the RNA) and entropy with respect to the end-to-end distance
of the RNA and C) shows the corresponding temperature and
entropy for the curves in A) and B). The magnitude of the force
and entropy in these curves in A) through C) is weighted by a fac-
tor of 20 to make them more discernable. The color of the curves
expresses the following changes of state in A) through C): (red)
a→b (isothermal contraction Tab), (green) b→c (adiabatic contrac-
tion Tab→Tcd), (blue) c→d (isothermal expansion Tcd ) and
(magenta) d→a (adiabatic expansion Tcd→Tab) with return to
original state. D) shows the force extension curves (in terms of the
external force) for a Gaussian polymer chain (GPC) and a hybrid
worm like chain (WLC) in the exact scale for a non-interacting
RNA sequence of length 50 nt evaluated at 300 K (red) and 600 K
(green). E) shows the same curves after being weighted by a factor
of 20. One of the brown dotted lines intercepts the y axis at fext=0
and the other at fext→∞ for the hybrid WLC. 
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Going from state c→d on isotherm Tcd (Figure 6B, blue curve), the
work done is

, (29c)

where, because rd>rc, heat flows into of the system during this process
(Figure 6C, blue line) and solvent or external forces must do work on
the system to pull the ends of the polymer chain apart. 
Finally, going from state d→a in the adiabatic transition from Tcd →

Tab (Figure 6B, magenta curve) is

(29d)

and the polymer will cool down with Tcd>Tab (Figure 6C, magenta line).
For a biopolymer, this condition would be akin to the denatured state,
where the external forces of the solvent cause the biomolecule to lose
its native structure. An equal and opposite amount of work as Equation
(29b) is done in this step with rd<ra, and for small DT(=Tcd – Tab)

.

The state changes depicted in Figure 6 are greatly exaggerated and
the equations are scaled by a factor of 20 to make the separation
between the curves more visible to the eye. For a weakly interacting
polymer as assumed with a GPC, rb ≈ rc and ra ≈ rd. As mentioned earli-
er, the elastic effect originates mostly from the entropy change;31,66,67

hence, for a GPC, cr and DT=T2 – T1 are rather small quantities. If this
is a true Carnot engine, then the process is completely reversible: the
system returns to its original configuration. Hence, polymers exhibit a
rather poor efficiency of l – Tab / Tcd=DT/Tcd (even assuming all the fric-
tionless, lossless, etc. conditions of a reversible process apply). This
property is certainly a good thing when it involves tires, because tires
don’t heat up easily when the rubber meets the road. 

Cyclic process for a polymer with multiple cross links 
The expressions in Equations (23) to (29a-29d) are only valid for one

specific cross link. Here we show how to extend the model to multiple
cross links. 
Starting from Equation (18), we know that when there are no exter-

nal forces acting on the ends of a polymer, fint(Rs)=0, where Rs is dis-
cussed in Appendix. Yet this is not simply limited to the experimentally
observable ends-to-end distance. For any mers i and j (i≠j and i<j),
there exists some function fij,int (rij) in which rij identifies the interac-
tion between mers i and j

and .

To see that this must be so, consider that if we were to cut this same

polymer at mers i and j to make a new polymer of length Nij, then we

would observer that (from the radius of gyration) and there-

fore . The terminal ends of the polymer simply correspond to i=l

and j=N.30

As a result, the total force acting on the polymer is 

(30)

where k∈{i1j1,i2j2....injn,...,iqjq} (0<in<jn≤N, and kn⇒injn)

identifies specific correlations between particular mers in and jn in the

chain, which typically involve base pairing in RNA (in,jn), fk,int specifies
the internal force for a particular Nk(Nk=n⇒jn–in+1 ) and q identifies the
number of such correlations. 
From here, it should be a small step to understand that since

fk,int(rk,T)=T(∂Sk(rk,T)/∂rk)T and the entropy of an ideal polymer has no
explicit temperature dependence, the global contribution to the entropy
of the polymer can be estimated from the net force in Equation (30), 

(31)

where we emphasize again that Equations (18) and (23) depend on Nk

and x and therefore, so does fk,int and Sk. Equation (31) is the basis of
the CLE model. 
Up to this point, the methods are, in principle, general. However, from

here, our interests are to find the general features of the CLE model that
can be measured by common experimental techniques such as melting,
denaturing solvents, or molecular tweezers. These generalizations
require that we make some important assumptions. First, we assume
that enough is known about the RNA under study and the subject of
interest is a single domain of RNA structure; where the closing base pair
(i, j) of a single domain is such that there are no other base pairs (i’, j’)
for which j’<i or j<i’. Second, if there is more than one such domain in
the structure, the methods are used only within the respective domains
separately and it is understood that additional methods are required to
express the collective response. Finally, we assume that these general-
izations are applied to relatively simple domains where most of the
experimental techniques have been applied in the past. In short, this
development is intended more for the purpose of understanding rather
than for the purpose of prediction.
The quantity fnet is actually a statistical quantity and a scalar that

weights the contributions from fij,int due to rij,int. Further, as previously
pointed out, the stable states of a system in thermodynamic equilibrium
are reasonably well defined: the denatured state ( ) and
the bound state (r2=rb). Both fint and rint are one dimensional statistical
quantities, not vectors. As a result, for a particular configuration of an
RNA polymer, these correlations between mers i and j can easily be aver-
aged over a domain of the structure

(32a)

(32b)

(32c)

and (32d)

where the bar over the quantity refers to an average. The bound state
(rb) is the same for all base pairs (i, j). Equation (32b) is also found
from Equation (32c): . Likewise, since Nij=j - i+1, Equation
(32c) can be derived from Equation (32d)

Hence, a quadratic evaluation of assures us of a consistent sin-

gle value relationship between , , and . Likewise, Equations
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(32a-b) can be generalized to 

(32e)

Now applying Equation (32a-e) to Equation (30), it follows that the
statistical internal force interactions will be 

.

Hence, 

(33)

Extrapolating from Equation (31)

(34)

Equation (34) is largely the basis for the contact order model.68-71 A
main feature of the contact order model is that protein (or RNA) folding
rates (kfold) depend on the largest domain in the native structure.52,69-76

The folding time of the largest domain (τfold) is related to Equation (34)
through . 
Hence, one can understand the observations of the contact order

model as effectively measuring the parameter for the largest
domain.25

Transforming Equation (25) to multiple cross links in the CLE model
via Equation (31) yields 

(35)

where crk is the heat capacity at constant length for the kth cross link, r1k
and r2k are the initial and final distances for the kth cross link (respec-
tively). Each state has a definite measurable temperature. Moreover,
Equation (25) is separable into q distinct equations 

(36)

If one state r1k or r2k is known, the other can be uniquely obtained (at
least in principle). Therefore, we have all the information that is neces-
sary to evaluate this expression for some given q cross links and a well
specified system.
However, it is usually not practical to measure r1k or r2k or crk in a sys-

tem in this way because we cannot probe the system with sufficient sen-
sitivity. Instead, following Equation (32a-e), it is more realistic to meas-
ure the average value of r1k, r2k and crk with respect to a given domain, 

, (37a)

, or (37b)

where Cr represents the collective weight of the heat capacity. In this way,
and can be understood as the observed rms distance between effec-

tive mers and located at the midpoint of a domain of RNA structure.
Likewise, finds an effective midpoint in the domain: . Again, this
is what the contact order effectively measures.22,25,69,76

It follows from Equation (34) that the work done on this system is
approximately

(38)

The approximate total work done by this RNA to transition from a
denatured state to a folded state involves the following substitution:

(the denatured state for a domain) and (the bound or
native state). Then, according to the contact order model, the domain
with the largest will take the longest time to fold (of course, with
some predictable provisos about various experimental conditions, etc.).
For an adiabatic processes 

(39)

This also means that Equation (39) can be written in a form similar
to Equation (28), 

, with  (40)

Therefore, the CLE model is entirely consistent with the basic thermo-
dynamics that are expected of an idealized system. When the system as a
whole is averaged over a domain, it takes on a similar form to Equations
(24) and (25), but equations are now weighted by a factor of q. 
For special conditions, Equation (32a-e) permits some approxima-

tions. If the main interest is in binding, the following rough approxima-
tion is sufficient 

, (41)

Given this approximation is acceptable, using Equation (40) the force
can be solved for directly in adiabatic transitions,

with (42)

where we have used the definition of in Equation (33) where
one effective cross link is weighted by q contact points. Again, the mag-
nitude of the observed external force, measuring the response by the
system, will appear to be q times stronger than if that force were acting
as q=1. For the usual forces involved in folding and refolding a polymer,
the approximations in Equations (41) and (42) are sufficient because
the contributions from the stretching part of the force are not so large. 
In general, if more precise values were needed, for Gamma-function

derivative based-equations like the GPC, it is possible to rearrange
fint(r) such that it is expressed in terms of r, 

.

Inspection shows that r→0 for large positive values of fint and
r→∞�for large negative values of fint. 
To end this Section, it is pertinent to point out that the merit in the

CLE model is that we do not have to restrict the definition of to large
objects like domains. Values of  corresponding to mers and can
be defined in terms of effective mers of Kuhn length x that interact at
the midpoint of a given stem. The domain is then subdivided into these
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separate stems, and the entropy evaluated as in Equation (31) for differ-
ent stems. In such cases, in previous work,23-25,28 we have identified such
objects with a tilde notation: 

, , (43a)

and 

(43b)

where k and qk reference a particular group of base pairs that collectively
form a stem, and , and specify the index and distance relationship
between the effective mers that form the stem. From the standpoint of
computation, such a strategy permits a fairly quantitative estimate of the
contribution of this global entropy component to the overall free energy. 

Application to experiments with multiple cross links
At this point, it is instructive to return to Figure 6, where the equa-

tions were weighted by a factor of 20. The justification for this was actu-
ally based upon Equations (33) and (34). Up to this point, we have
emphasized fint because we were interested in the RNA polymer itself.
However, it is practical to modify the approach to be more amenable to
experiment. In this regard, the equations are all inverted in Figure 6A-
C with respect to the laboratory frame of reference. From here, explicit
references to rext and fext will be made. If no explicit reference to exter-
nal coordinates is used, then it is assumed that r=rint. 
Although we have focused on Gaussian functions (actually Gamma

functions) in a considerable part our study, we hardly endorse this func-
tion as one reflecting the full behavior of a polymer. In particular, where-
as studies using solvents in RNA folding focus on the squishing aspects
of biopolymers, the current studies with molecular tweezers focus on
the stretching aspects of biopolymers. In the stretching domain, the
weakness of the Gamma functions is that the force response is simply
linear and the polymer can be stretched to infinite length; a feature that
is obviously unphysical.
In Reference 25, we introduced the worm like chain (WLC) model in

the place of the unrealistic linear stretching part of GPC, and showed
that this was a permissible solution in the family of polymer generating
functions. This permits us to propose a hybrid WLC (hWLC)

(44a)

where L=Nb, gw is a constant that we currently define such that
Equation (44a) matches the same intercept as the GPC model: fint
(Rs,GPC)=0. For x =5 nt and g=1, we found gw=0.85 yielded a relatively
close match. At present, gw can be chosen somewhat freely and the value
Rs solved for numerically. However, barring experimental evidence to
the contrary, the value should have a plausible relationship such as
Rs=(g/αN)1/2 and, in particular, a convenient one is
(Appendix).
Weighting the hWLC equation by q is also permitted, and, transform-

ing to the experimental frame of reference where Equation (44a) is
most likely to be applied, we write

(44b)

where and all other definitions follow. Note that rext will usually
require some form of transformation to make it compatible with , for
example , where rext,o is some reference point in the exper-
imental setup.

Figures 6D and 6E show fext for the GPC and the hWLC using two dif-
ferent weights q=1 (Figure 6D) and q=20 (Figure 6E) for a sequence of
length 50 nt and Kuhn length x =5 nt. Like Figure 6A through C, great-
ly exaggerated temperature differences are used: Tab=300K and
Tcd=600K. The weight q=1 in Figure 6D corresponds to a standard ideal
polymer where there are only weak interactions between monomers in
the polymer chain. An experiment using molecular tweezers on short
sequences of 50 nt would yield almost no response as a function of dis-
tance (rext) until nearly the full extension was achieved. On the other
hand, the weight q=20 shows a far more measureable response. 
Up to this point, the CLE model has been applied to problems were the

forces were internal to the molecule. This required that equations should
be averaged according to Equations (32a-e) and (37a-b) to approximate
the response of the RNA. In experiments using molecular tweezers, the
forces are externally applied to particular points on the RNA chain.29,65,77,78

In this respect, unlike the averaging strategies we have used up to now,
response measurements from molecular tweezers should be analyzed
with respect to the position at which the external force is applied.
Therefore, it is important to express interactions in terms of where rext is
actually pulling on the polymer chain with a force fext. 
Figure 7 shows the results of an experiment that was reported in

Collin et al.77 In the experiment, rext refers to pulling at the 5’ and 3’ ends
of the RNA chain. The experimental data is indicated by the red + and
green ×, where the red data points refer to the stretching of the RNA
and the green data points reference the return trip after release of the
external force. The small 44 nt sequence has additional RNA sequence
attached at the 5’ and 3’ ends of the 44 nt stem-loop structure. This extra
sequence is used to hybridize with (bound to or mount to) the corre-
sponding complimentary strands of ssDNA; one ssDNA affixed to a sur-
face, and the other ssDNA pulled with some optical tweezers (the gen-
eral setup can be found in the Supplement of Collin et al.).77 In these
experiments, the 44 nt sequence forms a stem of 20 bps, and this helix
rips (unzips) when the pulling force reaches a critical value causing the
helix to melt (the red data points jump to the curve on the right). When
this force is relaxed, the structure also relaxes; however, not on the
same path as during the pulling phase (the green data points jump to
the curve on the left). 
Calculation of the FE (Table 1) for this sequence at the measured

temperature of 25°C was found to be -37 kcal/mol using vsfold5 (mfold
3.0 parameter set). We also tried the older mfold 2.3 parameter set and
found the FE was significantly less stable (-31 kcal/mol, Table 2). In gen-
eral, it is our observation that the newer parameter set is better. Using
the Vienna package 1.4 implementation of the LP-model, all the FE esti-
mates in Table 1 are significantly more favorable than the experimen-
tally obtained FE (-37 kcal/mol). Moreover, the deviation would suggest
that the older parameter set is a better fit for the LP-model. In both the
CLE- and LP-models, the difference between the old and new parameter
set was about 5 to 6 kcal/mol (same sign). This suggests that this differ-
ence is some feature inherent in the dinucleotide pairing potentials of
the old parameter set when applied to this particular stem. 
In Figure 7A, the estimated force extension for the hWLC (based on

Equation 44b) is superimposed on the experimental data for a sequence
length of 50 nt and 20 contacts, a Kuhn length of 5 nt and a mer-to-mer
separation distance of 5.9 Å (to mesh the WLC and GPC together, we
have employed the observation that the persistence length is roughly 1/2
the Kuhn length).30 A more precise estimate for x in the ssRNA will be
discussed in Part II of this Series, however, the difference in FE between
using x =5 nt and using x =20 nt is less than 1 kcal/mol in this case and
therefore not significant in these rough approximations. In Figure 7A,
Equation (44b) is shown plotted together with a pure WLC,79 an expres-
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sion that does not contain the logarithmic squishing contribution in
Equation (44b). The native state is approximated by the vertical line at
3570 Å and the maximum pulling length for the sequence is, in princi-
ple, 295 Å upstream (about 3870 Å). Strong resistance from the RNA
chain is apparent from about 2/3 of the maximum possible length.
Figure 7B shows Equation (44b) for q=1 and q=20. The response

shown for Equation (44b) cannot not be made to fit the experimental
data for q=1. Figure 7C shows the GPC fit for q=20 along with the hWLC.
As expected, the GPC can fit data for rint≤RS; however, it cannot fit the
data at large extensions. 
In the experimental set up, the additional leader ssRNA sequence

(that is added on each side of the 44 nt sequence under study) is mount-
ed onto the corresponding complimentary ssDNA chain forming a hybrid
ssRNA/ssDNA chain (hdsRD) that resembles dsDNA. One ssDNA chain
is clamped down and the other chain is pulled by the optical tweezers.77

The hdsRD is also a polymer that behaves like a single strand when
pulled at its ends. In Figures 7A-C, the red data points on the left hand
side correspond to the response from the hdsRD chain when partially
stretched out. Along the left hand curve, when the force acting on the
hdsRD chains is large enough, the folded ssRNA suddenly rips and the
hdsRD chain shifts to the right by approximately 200 Å. At that point,
pulling on the hdsRD chain again resumes and becomes the primary
force response. Upon release, the hdsRD begins to relax until the ssRNA
can refold, at which point it suddenly returns with a zipping (refolding)
action. The relative positions of the hdsRD are shown in Figure 7 using
the dotted brown construction lines overlaying the experimental data.
The second curve overlaying the experimental data (after the ripping
occurs) is right shifted 200 Å from the initial position: 2/3 the maximum
extension of the ssRNA sequence. The two curves essentially lie on top
of the data indicating that the hdsRD resumes further stretching with
only minor contributions from the 2/3 stretched out ssRNA. 
The hdsRD chains are fit to an assumed sequence length of approxi-

mately 1000 bps. A reasonable fit of the data yields x =5 nt and q=2. In
unstressed equilibrium experiments, the typical Kuhn length of dsDNA or
dsRNA is quite long; about 50 to 200 bps.80-83 Pulling experiments on
ssDNA and ssRNA tend to be very flat until near maximum extension,84-86

characteristic of a fairly long Kuhn length. However, in Figure 7, the rise
of this hdsRD polymer is more characteristic of ssRNA or ssDNA. Perhaps
there is a considerable amount of ssRNA in the leader sequence or per-
haps pulling on the hdsRD chains is causing micro-fractures or uniform
stretching along the double strand pulling axis. It seems possible that
there may be torsion effects that are visible in the hdsRD response in
such rapid pulling experiments. 
The experiment is done under non-equilibrium conditions and Collin

et al.77 interprets the results using the Jarzynski equality.87 It is known
that these experiments will show hysteresis when they are done in non-
equilibrium conditions.66,67 The merit of the CLE model is that it can be
used in these non-equilibrium conditions to analyze the experimental
data. 
We observe three aspects where the CLE model is consistent with the

experimental data. First, the calculated weight of the response in the
model (fext(r)) is a factor of 20 heavier than a simple worm like chain,
q=1. A chain with 1/20 the response would not fit the experimental data
(Figure 7B). This suggests that the response is due to the weight of 20
cross links, consistent with the CLE model predictions in Equations (33)
and (34). Second, with a good parameter set, vsfold5 could predict the
structure and FE accurately to within experimental error and even the
poorer parameter set could be used. None of the RNA parameter sets
match the experiment with the LP-model (Table 1). A DNA parameter
set was used in Collin et al.77 to calculate the FE at 25°C; DNA typically
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Figure 7. An analysis of the experimental data reported in Collin
et al.,77 using the CLE model. Here, a hybrid worm like chain
(WLC) equation is used in A) through C), blue curve. In A), a pure
WLC (cyan) and the hybrid-WLC are shown together, both
weighted by a factor of 20 (q=20). In B), one hybrid-WLC has a
weight q=1 and the other q=20 . In C), the hybrid-WLC is shown
along with the Gaussian polymer chain, both weighted by q=20.
The brown dotted curves are used to fit the experimental data
before and after the ssRNA rips (unzips) or zips. The red ‘+’ indi-
cates the ssRNA during the pulling phase of the experiment, and
the green ‘×’ indicates the path after release. The brown hatched
curve on the left is for dsDNA chain stretching for the applied
force-extension before the RNA hairpin breaks and the correspon-
ding curve on the right is the same stretching after the RNA hair-
pin breaks and the whole complex shifts 200 Å, where all other
parameters are the same in both curves.

A

B

C

Non
-co

mmerc
ial

 us
e o

nly



[Journal of Nucleic Acids Investigation 2012; 3:e3] [page 31]

shows stacking energies that are about 30% smaller than RNA. Third,
the whole experiment including the hdsRD connectors could be ana-
lyzed quantitatively and interpreted using the CLE model, not just the
factors influencing the jumps in the experimental data due to the sud-
den state change of the ssRNA sample. Therefore, the interpretation is
consistent with the experimental observations and the CLE model per-
mits a straightforward picture of the events that unfolded (or refolded). 
In another experiment reported in Liphardt et al.,88 various fragments

of the P5abc structure in the group I intron were studied. In Tables 2-3,
results from vsfold5 and the LP-model are shown row by row using the
old and new RNA parameters for the three structures. An alignment of
the structures is shown in Table 3.88 The predicted structures by both
models are identical. Energy evaluation using the LP-model (using the
Vienna Package 1.4 implementation) shows large variation in predic-
tion depending on the parameter set used. In this case, vsfold5 was not
particularly sensitive to the bp parameter set. In general, vsfold5 is less
sensitive to small changes in parameterization. Again, the CLE model
could analyze the experimental data successfully.
In this Section, we have evaluated experimental results using the CLE

model and observed that the forces in the pulling experiments can be
approximated by a single contact weight that is proportional to the num-
ber of cross links. The CLE model is versatile enough to be used to quan-
titatively describe the dynamics of RNA and hybrid ssDNA/RNA linkers
that pulled on the RNA, it is able to make the same correct predictions

of the structures as the LP-model, it was able to correctly predict the FE
at 25°C with a good bp parameter set, and it is at least as stable, if not
more stable, in its FE calculations. Moreover, the CLE model is informa-
tive about the flexibility of these structures because it measures quan-
tities like the Kuhn length, whereas the LP-model has no such concept.
Finally, because the theory is adaptable, we are in a position to measure
quantities like and though we have not done so
in the current discussion. Therefore, there is considerable merit to
using the CLE model in analyzing RNA and other biopolymers.

Where did the misunderstanding creep in?

It should be clear by now that the primary object that causes entropy
loss in the global perspective of the CLE model is the stem, a major
source of long range structural order in a coarse-grained model. On the
other hand, the primary objects in the JS-model are loops and, with the
exception of an isolated hairpin loop closed by a small stem, the
accounting is topologically local. In dsDNA (and likewise dsRNA), a
topologically local model is valid because the formation of base-pairs is
local and the JS-model has been used successfully to model defects in
the double helix (i.e., mismatches in the DNA/RNA sequence)11,12,14,15,89

and continues to be used to some extent to model bubbles.16-18,90 The CLE
model would also approach the problem in a similar way because the
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Table 1. Free energy calculations at 25°C of the structure reported in Collin et al.77 using CLE model (vsfold5) and LP-model (RNAfold)
for the mfold 3.0 parameter set (new) and the mfold 2.3 set (old). The experimentally measured value is listed in the right most column.

Model New parameters Old parameters Experimental values
implementation [kcal/mol] [kcal/mol] [kcal/mol]

CLE (vsfold5) -37.22 -31.38 -37
LP (RNAfold) -46.87 -41.70 -37

Table 2. Free energy calculations at 25°C or 28°C of the structures reported in Liphardt et al.88 using CLE model (vsfold5) and LP-
model (RNAfold) for the mfold 3.0 parameter set (new) and the mfold 2.3 set (old). The experimentally measured values are in the right
most columns. 

Calc Parameter set Measured
method New Old No Mg2+ With Mg2+

Sequence [kJ/mol] [kJ/mol] [kJ/mol] [kJ/mol]

P5ab vsfold5 -139.9 -146.5 -144 +/- 20 -157 +/- 20
LP-model -175.4 -145.6

P5abc_dA vsfold5 -170.1 -168.8 -144 +/- 20 -169 +/- 27
LP-model -194.6 -173.6

P5abc vsfold5 -149.2 -145.0 -140 -----
LP-model -169.2 -149.8

Temp used with parameter set: (New) 25°C and (Old) 28°C.

Table 3. An alignment of the sequences listed in Table 2.

Sequence Alignment

p5ab: acagccguucaguaccaagucucaggggaaacuuugagaugg---------------ggu-----gcugacggaca
p5abc_dA: acagccguucaguaccaagucucaggggaaacuuugagauggccuugcaaaggguauggu-----gcugacggaca
p5abc: acagccguucaguaccaagucucaggggaaacuuugagauggccuugcaaaggguaugguaauaagcugacggaca
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major interactions of concern are largely local in character. However, the
entropy is not local when a single strand chain is folded into RNA/DNA
secondary structure. The main focus of this non-local entropy is not the
regions of disorder (the loops), but the regions of order (the stems). 
The main misconception is the assumption that a topologically local

entropy model for these loops is sufficient: that modeling dsRNA (or
dsDNA) and folded ssRNA (or ssDNA) is essentially identical except for
capping the double strand with a loop to close one end (or several ends)
to make it apparently folded ssRNA (or ssDNA) and that long range
entropy originates in the loops and is local to the loops. The base pair-
ing interactions are only topologically local for independent polymer
chains like dsRNA/dsDNA. Early versions of the RNA secondary struc-
ture prediction approach for ssRNA focused on solving the secondary
structure of tRNA.2,91 The main features of typical tRNA molecules are
three hairpin loops of similar length and the acceptor stem that closes
the structure. This means the only complex feature to challenge well
selected tRNA sequences is the acceptor stem that closes the multi-
branch loop. Hence, researchers assumed that failures in the predic-
tions were caused by poor parameterizations, which was partly true
because refined thermodynamic tables did obtain better results,32,35,92 as
was visible in the previous Section (Table 1). The large entropy change
caused by base pairing often contributes far more overall entropy loss in
terms of order of magnitude. So the focus was sound. Nevertheless,
lurking in the shadows, the model tends to fall into problems when lim-
iting cases are used to test it, as the third and fourth Sections showed.
It was for this reason that the JS-model tends to create problems, partic-
ularly when very long sequences were tested (Figure 4E). As will be
shown in the next two subsections (and further developed in Part III), it
is in long sequences that the global CLE begins to contribute in visible
ways in predictions that neglect the effect. 
Protein models generally focused on the hairpin and only recently

have considered interior loop issues.8,9,93 Although these limitations
appear to be less problematical in proteins (perhaps due to the types of
folding topologies found in most protein structures), these issues also
apply to proteins.

How does the CLE model overcome the issues
previously listed

The details on how to derive the entropy loss due to the formation
of structure using the CLE model are discussed in detail in Dawson et
al.23,25,27 In words, the entropy loss is measured by considering the dif-
ference in the entropy for the unfolded polymer chain and the folded
structure. 
From Dawson et al.,25-27 the simplest form of the free energy expression

for a Gaussian polymer chain with a fixed Kuhn length (x) is

(45)

where {ij} is the set of cross links i and j that comprise a specified struc-
ture (for example, in Figures 1 through 4), g is often set to 1.75 to correct
for the fact that real polymer chains are self-avoiding, Ψ=x /λ2 and λ2 rep-
resents the ratio of the cross link distance between the mers (measured
as coarse-grained beads on a chain) and the mer-to-mer separation dis-
tance (b). Here, Nij=| j – i |+1 with j>i. It is assumed that x >1 mer.
Weighting Equation (45) by 1/x reflects a renormalization/scaling of the
cross links to form effective cross links. This permits a simple implemen-
tation of the CLE. It should not be difficult to see that application of

Equations (34) and (43a-b) to Equation (45) for a fixed x (effective cross
link size) yields essentially equal expressions.
Essentially, Figure 2 is describing a domain of structure (as first

introduced in Dawson et al.).27,28 More specifically, Figure 4E in the CLE
results shows the Tar, Poly(A), SD, ψ and AUG regions as separate
domains from the PBS and DIS regions. The CLE model was originally
developed to find these closed off domains on the basis of the weight
contributed from the formation of base pairs. The CLE model tends to
discard solutions like the LP-model found (where the major domain of
structure is closed off not so far away from the 5’ and 3’ ends) because
the weight of such an entropy loss is far too large. For the examples in
Figure 2, because the region is long and contiguous, it was shown in
Dawson et al.25,27 that this entropy grows as max{N}1n(max{N}),
where max{N}=max{j - i +1}for a specified domain. This was seen to
influence the domain size of the RNA structure. Regardless of the order
in which we add the entropy loss due to cross link formation in Equation
(45), the entropy will consistently increase in a non-linear fashion. 
The model can also be generalized. We will show in Part II of this

Series that the stem length tends to be proportional to the Kuhn length.
In essence, the unit of measure is the Kuhn length in these coarse-
grained calculations. Figure 8 shows all the possible pathways of stem
formation for an example of a simple RNA molecule consisting of three
stems, two interior loops and one closing hairpin loop. According to
Equation (45), regardless of the order in which the stems form, and
even if some of the stems come apart and recombine later in thermody-
namic equilibrium, the source of entropy loss will depend on the stems
present (the source of order in a coarse-grained model) and the dis-
tance Nij for each bp (ij). There is no plausible stratagem or expedient
that could gain any advantage by changing the order or manipulating
the structure with various levers, as we previously observed. Based upon
the approximations of the CLE model in Equations (43a-b), the stems
should be evaluated in terms of the midpoint of the stems that are
formed rather than at the ends. 
There is also the local entropy that will be discussed in detail in Part

II of this Series. The local entropy results from local restriction on the
motion of the polymer and has the range of a Kuhn length. The local
entropy is independent of location in the structure (topologically local)
and can be a large value that is a function of the Kuhn length. In the
case of base pairing, the coupling between the chains due to stacking
adds further entropy costs. We are not talking about the local entropy in
Part I; we are talking about the global entropy contribution due to stem
formation of folded single-stranded RNA (and extrapolating the general
observations to DNA, proteins, etc.). 
Therefore, with the CLE model, since the cost of stem formation is

always increasing and unique for each new cross link that is formed, the
test we devised in the previous Sections would not prove to be a produc-
tive Maxwell daemon even in principle. Somewhat ironically, we are
confronted with the paradox that the entropy (i.e., disorder) is actually
a major determinant in the order of biopolymers. The flip side is that
this entropy (disorder) grants us a lot of mechanical action that a
biopolymer needs to do useful work as a genuine molecular machine,
not just to pose as a pretty picture on the page of a journal.

Correcting the Jacobson Stockmayer -model
To finish this monograph, it is perhaps instructive to consider how

the JS-model could be used to derive an expression similar to the CLE
model. A more rigorous derivation of the CLE model can be found in
Dawson et al.25,27,28

From the Appendix, we can infer that JS assumes a volume vs is occu-
pied by a cross link segment of the polymer, where the two ends of the
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chain are closed up in a loop. Indeed, JS originally addressed a problem
in which the loop that formed was a polymerized ring where all informa-
tion about the closing monomers is lost in the symmetry of the ring. For
RNA, that vs should be understood as the stem region and evaluated from
the mid-point of that stem. This would cover the volume change for a
single cross link (i, j), where the cross link is a stem. Let us suppose this
volume is associated with the binding of the longest segment of the
polymer chain (1, N). Then the region around position 1 and N is occu-
pying a volume vs as proposed by JS. However, let us now suppose that
there is another stem at (i’, j’)=(i’, N’) that also binds. Since 1<i’ and
N’<N, this cross link is also occupying a volume vs independent of (1,
N), where we assume the volume of two chains forming a cross link is
the same for both cases (i.e., the same Kuhn length). This means that
the change in entropy will be the sum of the independently formed cross
links

Extrapolating to a set of cross links, with Nij =|j – i|+1 and j>i, we find

(46)

where Aij=AJS for a fixed Kuhn length and the constant AJS incorporates
various scaling corrections for the Kuhn length which will be the subject
of Part II. The form of the expression is similar to that proposed in the
CLE model if the stretching term is neglected, as was done in the exam-
ple in Equation (41). It can also be seen in Figures 6D-E and Figure 7C

that for r<RS, the dominant feature is the logarithmic contribution.
Hence, we have shown that the JS-model could also be used to antici-
pate the CLE model and the reason why it is used in the way described
in Equation (1) is because of some misunderstandings about the deri-
vation of the single cross link in the original paper.1

Nevertheless, even these corrections are somewhat inadequate with-
out some consideration about the flexibility of the RNA in the conditions
involved. For example, in Figure 9, the two structures need to be com-
pared with the same (or similar) stem flexibility. In Figure 9A, it seems
relatively intuitive to assess that the single stem might be associated
with a single Kuhn length and that the large H-loop region might have
another, Figure 9B). The notation for the lattice constant and bds is
because it is quite common for authors to describe the contour length
in terms of the rise in the stack for the dsDNA/dsRNA, not the effective
bond distance between mers in the RNA/DNA (e.g., Forties et al.).16

Based on Figure 9B, we might reason that the long tail in Figure 9C has
a similar Kuhn length as Figure 9B. This would mean that the long tail
in Figure 9C is divided into six groups of stems (Figure 9D), each
weighted by Equation (46). In this case, Aij=AJS would be a reasonable
approximation for both Figure 9B and D. However, it is also possible that
the stem now becomes much stiffer with a new Kuhn length that is also
the length of the new stem, Figure 9E. If this be the case, then we must
correct AJS to reflect the fact that the Kuhn length has changed in the
two Figures. To some extent, this should also be considered for the loop
regions of Figures 9B, D, and 9E, which are different. Finally, the Kuhn
length is finite and a typical maximum is perhaps 200 bps.94 Therefore,
a very long sequence of dsRNA (e.g., 200 kbps) capped at one end by a
loop is not likely to be found, even if the Kuhn length does reach the x
=200 nt maximum in the double strand region of the folded ssRNA
because the multitude of clamps (i.e., Figure 9D) that would be required
is not strong enough to hold the domain closed.
Estimating AJS is important because, in both Tables 1 and 2, part of

the reason the LP-model does poorly is not just because it neglects the
global entropy, but because it does not properly estimate AJS. For exam-
ple, if only the global entropy is considered, Figure 9E has a smaller
global weight than Figure 9D. However, it will be shown, in Part II of the
series, that after the local entropy ( AJS) is evaluated for the stem in
Figure 9E, the total entropy (local plus global) of Figure 9D,E are nearly
the same magnitude. Hence, it is still important to go further into the
details of how a proper value for can be found and to understand this
problem in terms of both global and local entropy issues.
In part II of this Series, we will show that a theoretical expression for

AJS can be derived from the CLE model and that this (currently) empiri-
cal constant can be derived from first principles. We will also consider
the issue of a variable Kuhn length and one that changes with the for-
mation of different types of stems and loops. In Part III, we will return to
the combined role of global and local issues.

Conclusions

In this work, we have shown that the thermodynamic model that is
commonly used to predict RNA structure and protein structure in some
cases has a flaw that can lead to unphysical predictions. For the system
that the model was originally developed for, the parameters were tuned
to render a sensible result. It is only when the model is extrapolated to
more complex cases that issues may arise. We have shown that the CLE
model is an alternative that is more general and helps overcome these
issues. Moreover, the CLE model easily expands into a fully adaptable
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Figure 8. An example of different folding pathways for a simple
RNA structure with three stems, two interior loops, and one hair-
pin loop from the denatured state to the native state.
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thermodynamic model allowing a complete description of the long range
entropy for any configuration of a polymer. Such flexibility would prove
useful in studying the dynamics of RNA, both in the secondary structure
and in 3D structure calculations. The thermodynamic equations of the
CLE model are applicable to pulling experiments with molecular tweez-
ers with simple modifications and the predictions can be quantitative.
Finally, a crude version of the CLE model can be derived from the
Jacobson-Stockmayer model based on a clearer understanding of the
model itself. Inasmuch as the dynamics of real polymers can be approx-
imated by a coarse-grained model such as the CLE model, we have
shown that the approach is consistent and can model the dynamics of
biopolymers.
Experiments are influenced by the understanding of the theory of the

time; therefore, future work on these subjects should include at least

some of the following: i) new experiments need to be done to refine the
statistical model itself. We introduced the hybrid worm like chain model.
However, some parameters could only be estimated. The fundamentals
should be explored experimentally; ii) the CLE model appears to satisfy
the thermodynamics, but, just like the ideal gas model, it is likely to
have these properties only over a limited range. In particular, very little
is currently addressed on the temperature dependence of these entropy
equations. It is unlikely that they are pure linear functions of tempera-
ture. RNA hybridization should be studied in context dependent envi-
ronments such as the case where helices are packed side-by-side as
opposed to solvent exposed helices. We need to understand the range of
applicability for the current equation of state.
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