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Abstract 

In previous work, we have shown that the entropy of a folded RNA
molecule can be divided into local and global contributions using the
cross-linking entropy (CLE) model, where, in the case of RNA, the cross-
links are the base-pair stacking interactions. The local contribution to
the CLE is revealed in the Kuhn length (a measure of the stiffness of the
RNA). The Kuhn length acts as a scaling parameter. When the size of
the system is rescaled, the relationship between local and global free
energy must be renormalized to reflect this rescaling. In this renormal-
ization process, the Kuhn length increases, the local entropy also
increases due to freezing out of the local conformational degrees of
freedom. At the same time, as the number of degrees of freedom
decrease, there is a significant reduction in the global entropy. Here we
present a method, based on the concepts of renormalization theory, to
quantitatively estimate the size of the contribution from the local
entropy as a function of the Kuhn length. The local entropy correction is
used to predict the current empirically derived constant in the Jacobson-
Stockmayer equation. The variation in the Kuhn length is shown to be
largely influenced by the length of the double-stranded RNA stems
formed in the secondary structure of folded RNA. This result is used to
test the resulting entropy under a variable Kuhn length in stem-loop
structures. Comparisons between a variable Kuhn length and a static
Kuhn length on a short stem-loop of RNA are also examined. The model
is quite general and is also directly applicable to protein structure and
folding problems.

Introduction

In a recent work,1 we explained how to unify the concept of conforma-
tional entropy between lattice models, the Gaussian polymer chain
(GPC) model, the worm-like chain (WLC) model and the contact order
(CO) model. Entropy in a polymer is a measure of the disorder of the
polymer chain and a function of the number of conformational degrees
of freedom. The entropy model was divided between local and global
contributions to the free energy (FE), where the local FE involves the
direct interactions between neighboring monomers (mers) along the
polymer chain and the global FE involves long range correlation between
distance mers. In the ideal polymer, where the mers consist of non-
interacting beads on a chain, this FE is entropic in character. A signifi-
cant parameter associated with this entropy is the Kuhn length (ξ) or,
in other parlance the persistence length.2,3 [The persistence length is
derived from the WLC model and is about 1/2 the size of the Kuhn
length.3 Studies of double-stranded DNA and RNA often are expressed in

terms of the persistence length]. The local entropy becomes more neg-
ative with increasing ξ due to the local freezing out of the degrees of
freedom of the neighboring mers. The global entropy becomes more
negative whenever the ideal polymer is distorted from its equilibrium
position, either by stretching or compressing (folding). 
In previous work,1,4-6 we have introduced and developed the cross link-

ing entropy (CLE) model in which we focused on the concept of Kuhn
length in the context of the global entropy. We argued that the Kuhn
length is usually longer than the monomer-to-monomer (mer-to-mer)
separation distance, and, for single-stranded RNA (ssRNA), typically
varying between 3 to 10 nucleotides (nt) for RNA. Therefore the model-
ing must be made coarse-grained by definition and coarse-grained at a
scale larger than the natural mer-to-mer distance. However, we have not
examined how the Kuhn length influences the local entropy in the
coarse-grained approach, other than to write down some of the relevant
equations.
Pedagogically, it has proved highly instructive to train students to

conceptualize problems at the monomer (mer) level (or a smaller atom-
ic level). There is little information on how we must fix our calculation
strategy to account for the fact that the monomers (amino acids, nucle-
ic acids, etc.) interact locally as a group in Kuhn-length sized units.
Likewise, though some general concepts of renormalization exist,7,8 nei-
ther is there much information on how to scale these local corrections
quantitatively. As a result, calculations are typically done in a mer-by-
mer or atom-by-atom fashion in biophysical problems.
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The Kuhn length introduces a straightening effect that requires con-
straints to account for it. These constraints reduce the number of
degrees of freedom. In effect, the mer-by-mer unit approach must be
replaced by a group of monomers: more of a group-by-group approach. If
a polymer of N monomers has complete freedom of motion at the posi-
tion of each monomer, then the polymer has N degrees of freedom. Most
polymers have a Kuhn length greater than the mer-to-mer separation
distance. Roughly speaking this means that, for a given polymer with
Kuhn length ξ and N monomers, the polymer has approximately N/ξ
degrees of freedom. We must account for this change in the number of
degrees of freedom by incorporating constraints on a local scale and cor-
recting the overall entropy of these frozen out degrees of freedom. 
The Kuhn length (and persistence length) has been a subject of study

in double-stranded RNA (dsRNA) and double-stranded DNA (dsDNA).
By far, the majority of the studies that recognize the importance of per-
sistence length are directed to dsDNA. Experiments note that the per-
sistence length of dsDNA is typically at least 20 times longer than the
persistence length of ssRNA or single-stranded DNA (ssDNA).9-15 Most of
these studies have focused on dsDNA melting where the base pair (bp)
separation forms symmetric internal loops (I-loops), also known as bub-
bles because of the apparent bulging in the loop region. Experimental
work has also focused on the effects of ionic strength.16-20 With the devel-
opment of atomic force spectroscopy (AFM) and related deposition
experiments, the persistence length has been measured based on the cur-
vature of the DNA on a 2D planar surface under various conditions.21-23

Numerous studies of dsDNA using optical tweezers in force extension
experiments report the persistence length.12-15,24-26 Theoretical studies
generally recognized that the ssDNA in the I-loop has a very different
persistence length than in the dsDNA region. However, studies have
been largely directed to finding the melting temperature (Tm) and the
average bubble size of long dsDNA sequences,27-32 or evaluating the
structure of dsDNA near the melting transition.30-32 There are only a lim-
ited number of experiments directed to measuring the length depend-
ence of the Kuhn length itself as a function of sequence.18 There have
also been a few studies of stacking of ssDNA in which there are some
indications that ξ may depend on the sequence context.33-36

For folded ssRNA, Felsenfeld’s group attempted to measure the Kuhn
length of various unfolded ssRNA sequences using sedimentation tech-
niques in the late 60s.37-39 Later, in the mid 80s, Hagerman’s group used
transient electric birefringence (TEB) to measure the persistence
length of folded ssRNA and dsRNA for specific RNA structures.40-44 More
recently, AFM was used to evaluate the persistence length of dsRNA.45

Optical tweezers experiments have been directed to folded ssRNA meas-
ured under stretching conditions where Tinoco’s group has studied a
considerable number of RNA molecules.46-54

Changes in persistence length due to RNA folding have been done
based on the evaluating the radius of gyration.55,56 However, the majori-
ty of these studies were done using TEB by Hagerman’s group,40-43 where
it was also shown that the RNA stiffens due to the formation of base
pairs (stacking) rather than due to electrostatic effects.57

Although there have been this handful of dedicated experimental and
theoretical studies of DNA and RNA, the Kuhn length (or persistence
length) has not been applied to the prediction and folding of ssRNA
structures except in our work. 
In part, this is because experimental techniques typically only extract

average values for the Kuhn length (or persistence length).22,23,55,56 Yet,
in terms of the appearance of known RNA structures, it is largely under-
standable that scaffolding typically is very stiff and therefore involves
long stems whereas moving segments of an RNA chain should be more
flexible and therefore involve short stems or free strand regions.
Recognition regions could be either stiff or flexible, depending on the
binding context and the type of cognate structure involved. Usually, this

is discussed in x-ray and NMR structure under the category of flexibili-
ty.58 Since flexibility is, in essence, the inverse of the Kuhn length, the
concept of a variable Kuhn length already has support from experimen-
tal data. Likewise, recent studies into DNA have begun to ask questions
about the nature of this persistence length.59

Neglecting these constraints can be both significant and misleading
in structure prediction. For example, in our first version of CLE
model,60,61 we only considered the global contribution and filtered other
RNA secondary structure predictions obtained independently. When the
global CLE model was set up to work on its own without constraints on
the flexibility, a new problem emerged where the structures tended to
crinkle up. In Figure 1A, the correct prediction for a sequence of C-U-G
repeats is shown and is predicted by all current methods including our
own. Figure 1B shows what happens when we only considered the glob-
al entropy and we fail to constrain the number of degrees of freedom.
The structure crinkles up because there are too many degrees of free-
dom and the flexibility of the structure is overestimated. When we
accounted for these straightening effects caused by the Kuhn length,

Article

Figure 1. A) The calculated secondary structure of a CUG repeat
sequence using a standard genre of RNA structure prediction pro-
grams. This structure prediction is essentially correct. It is also
predicted correctly using the current versions of vsfold4 and
vsfold5 (with option -cug 14). B) The calculated secondary struc-
ture of a CUG repeat sequence when only the global entropy is
used without correcting with constraints (straightening effects
caused by the Kuhn length) and accounting for the reduction in
the number of degrees of freedom. This structure prediction is
incorrect and changing the Kuhn length to 10 nt or more does not
change this result even though this should mean that the structure
will tend to straighten over at least the distance of 10 nt in the
double helical regions.
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applying constraints and excluding the excess degrees of freedom, we
arrived at the correct structure in Figure 1A. 
Although traditional methods for predicting RNA structure have neg-

lect the Kuhn length and are able to obtain correct structures without
ever considering the Kuhn length, a Kuhn length-blind approach leaves
the users in the dark about the flexibility of the structure. We can nei-
ther deduce the mechanical action of various parts of the RNA nor can
we discern the true thermodynamics of transition states, even if the cor-
rect structure is fortuitously obtained as a byproduct of a Kuhn length
blind approach. Therefore, neglecting the Kuhn length limits our under-
standing of RNA structure.
In previous studies, we have emphasized the effects of the global

entropy.1,4-6,60,61 Whereas some of the conclusions on the local entropy
have been published before, the derivation and the full perspective have
not been explained. In this study, we aim to introduce the full method-
ology that is used to compute the local entropy with the Kuhn length and
the effects of changing the number of degrees of freedom when the
Kuhn length is changed. It is important to see this local entropy as a
kind of constraint that changes the overall stiffness of the RNA. After
developing the basic methodology for calculating the local entropy, we
show the relationship between the local entropy and the constant term
found in the Jacobson-Stockmayer (JS) equation (A

JS
) from first princi-

ples (where the original derivation is explained in Appendix A of Part I
of this series). From there, we consider how a variable Kuhn length
influences the FE calculations. In the final Section, we discuss these
findings in the context of computational approaches. The concepts dis-
cussed here are directed to folded ssRNA; however, the concepts are
applicable to all polymers with appropriate modifications. 

Summary of the global cross-linking
entropy model 

The global entropy in the CLE model is explained in considerable detail
in several papers,1,4-6,60,61 some of which are public access. Therefore, we
simply write these equations with little further explanation. 
Let N be the number of mers and b the distance between consecutive

mers on the RNA polymer chain. Let i and j represent the indices of a
pair of mers subject to 1£i<j£N. Let the Kuhn length (ξ) be defined in
units of mers such that the distance b′=ξb. Hence, when ξ=1, b′=b and
the separation between monomers is of unit length in such a case. 
In RNA, ξ is always longer than the monomer-to-monomer (mer-to-

mer) separation distance. This freezing out of the degrees of freedom of
the individual monomers results in the formation of effective mers.
Therefore, we must apply renormalization theory to correct the FE to
reflect these changes.7,8 The essential concept behind renormalization
theory as used in the context of folded ssRNA structure in this work is
explained in the Appendix.
Suppose that we can somehow turn off the complex interactions

between the mers in an RNA molecule (even better than a denaturing
solvent). This would represent the conditions of an ideal polymer. In
such conditions, the root-mean-square separation distance between
mers i and j (ij-rmsd) is

, or , (1)

where Nij is the number of residues separating i and j (Nij=j–i+1), k=ξ1–n

and n is a parameter expressing the excluded volume. From the central limit
theorem,62 we find the variance 〈r2〉ij= ξNijb2: i.e., the ij-rmsd for n=1/2. For
a Gaussian polymer chain (GPC), n ≡ 1/2, k=ξ1/2 and 〈r2〉ij=ξNijb2. The
parameter n can range between 1/3<n<3/5, where n<1/3 expresses a col-
lapsed polymer and n=3/5 expresses a swelled polymer.2,63

When i=1 and j=N,〈r2〉1N=〈r2〉expresses the end-to-end mean-
square distance separating the ends of the RNA and is a measurable
parameter based on the radius of gyration.2,3,63 If one were to cut this
sequence at i and j such that the new sequence is length Nij=j-i+1, then
the ij-rmsd would be the same as the end-to-end rmsd.
Now, let rij represent some experimentally observed distance between

mers i and j, not necessarily equivalent to . For ξ>1, the global
contribution to the entropy for the interaction between mers i and j is 

(2)

where ξ scales the entropy contribution due to stem formation by a cor-
responding reduction in degrees of freedom because the length scale is
based on effective mers rather than mers (Appendix), d is a finite posi-
tive constant and g (>0) is a weight that corrects for the fact that real
polymer chains cannot have more than one mer occupying the same
space at the same time, where the common value used in RNA calcula-
tions is g=1.75 compared to Gaussian statistics (g≡1).1 This is known as
self-avoidance and differs from the excluded volume associated with the
pamameter n. Of the other parameters, Adg is the spherically symmetric
contribution to the volume term, 

(3)

where is the Gamma-function; weights the vari-

ance (〈r2〉ij) in Equation (2), 

(4)

with

(5)

and is a normalization constant

(6)

with 〈r2〉ij defined in Equation (1).63 In the case of the GPC (where
d≡2, g≡1 and n≡1/2): Adg =4p,〈r2〉ij =ξNijb2, ϑijξ =3/(2ξNij) and Cijξ =
[3/(2pξNij)]3/2.1,3

The global change in entropy is measured by considering two stable
states of the system: the denatured structure, where

, and the native state, where rij=lb for RNA. Since
the polymer involves very crude approximations of shape, the value of
lb is not equivalent to the chemical bond length between nucleic acids
in the double helix, but the distance between effective mers. 
By finding the end-to-end separation distance, we have a way to

describe the denatured state of the RNA. The entropy-loss due to bp for-
mation as the structure folds from the denatured state to the native
state has the general form

. (7)
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Substituting Equations (1) and (4) into Equation (7), we obtain

(8)

where Ψnξ=ξ -1(ξ/l)1/n. 

For the GPC, Equation (8) reduces to 

. (9)

Now, based on Equation (1), the outlined derivation of renormaliza-
tion in the context of folded ssRNA (Appendix), and using Equation (A6)
with the appropriate renormalization weight 1/ξ, we integrate the force
to derive the entropy.1 The total entropy-loss is the sum of the local cor-
rection (renormalization constant) and the global contribution caused
by stem formation1

, (10)

where DSbp (Nij) is the global contribution given in Equation (8) and the
derivation of the local entropy term (DSξgd) will be explained in the fol-
lowing Sections. From Equations (7) to (9), as ξ increases, the influ-
ence of the global entropy associated with base pairing (DSbp(Nij))
reduces by 1/ξ as a result of the renormalization. The summation of
DSbp(Nij) in Equation (10) has been derived from first principles in
numerous independent ways and can be understood as an integration of
the base pairing entropy.1,60,61

Derivation of the local entropy loss corrections

When the Kuhn length of a polymer changes, the number of effective
mers changes. This changes the number of degrees of freedom and
therefore the entropy. 
The Kuhn length is a parameter that expresses the length scale

where weak coupling approximations become valid.64 Several monomers
are grouped together into a single link due to strong mutual coupling.
Increasing the Kuhn length introduces local order and strong coupling
between monomers over a similar length scale as the Kuhn length. This
results in a negative increase in the local entropy that is a function of ξ.
As the local structure couples and hardens, the global contribution to the
CLE will decrease due to the 1/ξ scaling of the number of effective mers
[Equations (8) and (10)]: i.e., decreased long range coupling. In accor-
dance with the renormalization approach, the FE is redistributed
between the local and global contributions such that the FE remains
essentially the same.
We should not view the Kuhn length as though the polymer chain

were a mere group of straight rigid rods on hinges; rather the Kuhn
length represents substructures in a more or less frozen conformation
over a length scale of ξ.43 It is a statistical quantity that describes the
effective scale of the local structure of the polymer. Of the 3N degrees of
freedom in the polymer, each link (of length ξ) has ξ degrees of free-
dom that are frozen out of its total of 3ξ degrees of freedom. In RNA, this
is due to lack of free rotation of the residues due to clashes with other
residues in the same chain, base stacking and the stabilizing effects of
monovalent and divalent cations.17,42,65-67

To describe the segmentation in the polymer chain relative to some
independent reference, we introduce a fundamental reference Kuhn
length segment (ξo: measured in units of mers relative to N). Initially,
since the reference here is the monomer, the reference Kuhn segment
length is ξo≡1 mer. To describe relative changes in the Kuhn length, this

reference is important. In this Section, we will assume that ξo=1 mer.
Cases where ξo≠1 will be considered in the next Section.
When the Kuhn length increases from 1 mer to ξ mers, these ξ mers

are absorbed into a single effective mer. For a given polymer chain of
length N, we associate ξ monomers as a single unit and count Ñ(=N/ξ)
independent units (effective mers or links) in the biopolymer. The
renormalized polymer chain now contains Ñ links (each containing ξ
mers) where at each joint of the polymer chain, the connecting links are
free to move in any orientation relative to one another (with self-avoid-
ance accounted for in the g term).
Now we must consider how to compute this renormalization. In the

previous Section, when the global FE is evaluated by way of the force
(Appendix, Equation A6), the response is entirely entropic. The local
entropy is more complex. Base pairing involves both enthalpy and
entropy, DGbp=DHbp-TDSbp. In the experimentally obtained base pairing
parameters, the entropic term is approximately -25 cal/molK (about -22
cal/molK for AU and -27 cal/molK for GC) and this is true for both RNA
and DNA.68-70 This suggests that DSbp expresses a local freezing out on a
scale smaller than 1 mer (our basic unit of size in these problems).
Interestingly, an early calculation by Tinoco’s group found a value in this
range for the bp interaction.71 Whether the value of DSbp changes due to
different dsRNA/dsDNA lengths is not clear, but the magnitude appears
to be limited to freezing out at a mer length scale. Therefore, since the
length scale of DGbp is smaller than ξ and this FE is applied in a additive
fashion independent of any other local or global issues, we can treat
DGbp as independent of the configurations of length scale ξ>1 mer. For
this reason, the entropy of base pairing can be neglected here. In the
final Section, we will come back to this point in an actual stem-loop cal-
culation.
Let Dsξo(≡1)→ξ and Dgξo(≡1)→ξ represent the change in entropy and FE

(respectively) of these effective mers (of initial length 1 mer) due to a
change 1→ξ. With this change in ξ (currently treated as though it were
identical throughout the sequence), let DS

1→ξ
=ÑDs

1→ξ
represent the

Kuhn length correction of the entropy for the entire biopolymer chain.
Then, ∂(DS

1→ξ
)/∂Ñ=Ds

1→ξ
. This implies that the effect we are looking at

is associated with the chemical potential m, where the correction to the
FE becomes DG

1→ξ
=Ñm. The Kuhn length corrections are far more local in

character than the global CLE, which ranges over the entire length of the
biopolymer (e.g., RNA: 5’ and 3’; proteins N-terminus and C-terminus). 
The next step is to express the change in the number of effective

mers. For a segment of the chain of length n=ξ mers, initially we have
ξo=1 mer and this increases to ξ. The total number of effective mers has
decreased from N to Ñ=N/ξ. This means the number of effective mers
has changed from a count ni=ξ [mers] to a count of nf=1 [effective
mer] over the length of the coarse-grained sequence. Since we are
interested in the entropic cost of changing the course-grained size of
the link, we compute the change in the number of effective mers as 

(11)

For a system of constant end-to-end separation distance r [from
Equation (2)] and T (temperature), the Kuhn length correction FE of a
single link is 

(12)

where U is the internal energy and, for a system of r and T, (∂U/∂V)T,r
can be neglected in these problems because we are not evaluating vul-
canized rubber (where the volume does change) but a single polymer
chain of RNA. Moreover, (∂U/∂r)T,V=0 for an ideal polymer. Hence, the FE
is entirely entropic in character for an ideal polymer (DU~0),63 as also
discussed in Part I. Equation (2) contains a scaling factor (1/ξ) because
the interactions considered involve individual mers. Here, we consider
a collective group of mers of length ξ. Hence, we do not need to consid-
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er this scaling factor. Therefore, to compute Ds, Equation (2) is used
without the 1/ξ renormalization weight because the computation is of
the local interactions on a length scale of ξ

.

where r=ξnb because the region of interest is a sub-sequence (of length
ξ) that is stretched to a length ξnb in some part of the polymer chain.
The entropy of the sub-sequence is 

where s(ξ)r,U is the entropy expressed as a function of the Kuhn length for

a single segment of length ξ. Inserting , the

first term become . In ϑξ, N=1 because we

began with ξo=1 (corresponding to onemer) and we ended with ξ (corre-

sponding to one effective mer). Then

(13)

for the case where d=2 and n=1/2, z(g,d)=(g+1/2). Explicitly using ξo=1,

(14)

Hence, we obtain 

(15)

where a(ξ,1)=zξ is a weight that must be determined from the bound-
ary conditions of Equation (15). Interestingly, Equation (15) resembles
an expression for the change in free volume in Flory-Huggins theory.72

The biopolymer under study is frozen locally along only one axial
direction, yet ξ in Equation (15) is one dimensional and uniaxial.
Experimentally, long chains whose lengths are of similar order to ξ are
not simple straight rod-shaped structures.43 Therefore, we must scale
this value by the dimensionality of the system (D) to properly express
the frozen degrees of freedom in the link (where we assume D≡3
dimensions). 
Using Equations (11) through (12), and solving for the chemical

potential for ξ>1 yields 

(16)

where we have used Equations (12) and (14) to express the differential.
The properties of m require that limξ→1+m=0. Consequently, for d≡2,
a(ξ,1)=(g+1/2)ξ.
Equation (16) simplifies to a/ξ→(g+1/2). To obtain the total FE of a

link of length ξ, Equation (16) must be integrated over the path 1→ξ, 

(17)

The change in the FE due to variation in ξ becomes 

(18)

where D≈3. The integral 

(19)

can only be solved numerically for arbitrary ξ. Values for Equation (19)
are tabulated in Table 1. From Table 1 or inspecting the limits of
Equation (19), it can be seen that Equation (18) approaches
DG→(g+1/2)NkBT/3 asymptotically for very large ξ, and DG=0 for ξ=1
(as expected). Landau and Lifshitz approximate the local entropy loss as
a linear function of the Kuhn length.73 Equation (18) can also be found
empirically by calculating the FE of a structure with a good value for ξ
(including the global entropy contribution to the FE), fixing the baseline
of the total FE to a known experimental value and gradually increasing
ξ and evaluating the FE using the global entropy. As ξ becomes large,
the global contribution tends toward zero leaving only the local contri-
bution. Hence limξ→∞ f(ξ)/ξ=1: (N-1)/N in the limit is 1.
For the case where d≠2 and ξ>1 nt, similar steps used to obtain

Equation (18) yield a general expression (for d>0, g>0, and 0<n<1)

(20)

where, v=(g+1/d)/z(g,d) is a stretching weight on the gamma func-
tion, and in general, we assume D=3. When d≡2, then v≡1 and
Equation (20) reduces to Equation (18). 
As shown in recent work,1 the generalized case of z(g,d) need not cor-

respond to a gamma function. In such cases, z takes the form of a
weight. In that work, it was shown that the stretching component and

Article

Table 1. A compilation of standard values for f (ξ) in Equation (19).
It can be seen that this function approaches ξ asymptotically.

ξ f (ξ) f (ξ)/ξ

1  0.000 0.000 
2  0.178 0.089 
3  0.563 0.188 
4  1.061 0.265 
5  1.630 0.326 
6  2.251 0.375 
7  2.910 0.416 
8  3.600 0.450 
9  4.314 0.479 

10  5.049 0.505 
15  8.942 0.596 
20  13.071 0.654 
50  39.798 0.796 

100  86.799 0.868 
200  183.334 0.917 
500  478.016 0.956 

1000  973.419 0.973 
2000  1968.300 0.984 
5000  4960.654 0.992 

10000  9954.077 0.995 
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the compression component are decoupled, at least within the frame-
work of this class of approximations.
In Reference 3, Flory provides an example of polycatena sulfur in

which the Kuhn length is shorter than the mer-to-mer distance (b) (see
pp 157-159). Therefore, for completeness, we also should consider the
case where 1>ξ: the number of effective mers increases from 1 mer to
1/ξ effective mers. 
Using Equation (11), Dn becomes Dn = nf  – ni = 1/ξ – 1 =(1)(1/ξ – 1).

Consequently, the general expression for Dn is

(21)

where max{···} is the maximum value of the arguments. For biopoly-
mers, ξo≡1<ξ, and Equation (21) expresses the loss in the number of
mers; Dn=ξ(1/ξ-1)<0. If ξo≡1>ξ, then Equation (21) expresses the gain
in the number of mers; Dn=ξ(1/ξ-1)>0. 
Using similar steps, the case where ξ<1, Equation (14) becomes 

Following the remaining steps, yields the following chemical potential

(22)

and the following FE for the sequence as a whole

(23)

with 0<ξ£1. Equation (23) can occur when internal attractive forces are
significant;3 however, this is not applicable to RNA or proteins. 

Variable Kuhn Length for heterogeneous
monomers and block copolymers

So far, we have handled the problem with a presumed static Kuhn
length. For many systems, this is a reasonable assumption and restric-
tion. However, functional RNA sequences are likely to have a distribu-
tion of Kuhn lengths rather than a single Kuhn length, because such
RNA contains recognition regions, scaffolding, etc. We seek to general-
ize the expressions of the previous Section to reflect this variable Kuhn
length.
If the Kuhn length is variable over the length of the sequence, then

we suppose that the sum of the individual Kuhn lengths (ξi) should
equal the total number of monomers, i.e.,

(24)

This suggests that we can write Equation (20) as a summation

(25)

Simplifying Equation (25) to a form like Equation (18) yields 

(26)

For the limiting case of large xi, the local FE approaches 

(27)

and using Equation (24), it is clear that the total free energy caused by
this entropy change is again approximately (g+1/2)NkBT/D. Hence, the
model easily adapts to a more general expression with little difficulty. 
This reasoning, where we break down the problem into smaller units

of Dgi(ξi,g,d), can also be applied to polymers with heterogeneous
monomers of different size mer-to-mer distance (b). This would permit
treatment of block copolymers.
In the first part, we assumed ξo≡1. For a homogeneous polymer, this

is a valid assumption. However, there are situations where the polymer
consists of a heterogeneous mixture of monomers with different
lengths in the chain: for example, the cap region of messenger RNA
(mRNA). In such situations, the N monomers should add such that 

with (28)

where bi is the mer-to-mer distance between mer i and mer i+1, is the
mean mer-to-mer separation distance, ξoi≥1 (given at least one i satisfies
min{ξoi}=1) and b must be defined as the minimum length min{bi}=b.
Let Dsξoi→ξi and Dgξoi→ξi represent the change in entropy and FE

(respectively) of these effective mers (of initial length ξoi) due to a
change ξoi→ξi. For a system of constant r and T, the Kuhn length cor-
rection FE of a single link is 

(29)

Following the same procedure as outlined in the previous Section, we
substitute ξoi and Equation (2) into Equation (29) and solve for Dgξoi→ξi

with d≡2. This yields 

(30)

Now, generalizing Equation (12) for the change in the number of
effective mers

(31)

leads to

. (32)

Similarly, for ξi<ξoi

(33)

From here, the problem can be broken up into a heterogeneous mixture
of mers of different mer-to-mer separation distance (b). On an immedi-
ate level, the main application of this methodology is in computing het-
erogeneous systems such as the cap region of mRNA, or mixing of strands
of RNA with DNA or the mixing of proteins with sugar chains in glycopro-
tein structures. With a diverse network of complex side chains, the treat-
ment can expand to more heterogeneous monomers than nucleic acids
(which are at least of similar size and chemical behavior).

Stem binding and destabilization free energy

The rough linear dependence of large ξ on the local entropy accounts
for the entropy corrections in the model so far presented. However, it
does not, in of itself, treat the problem of structures crinkling up as in
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Figure 1B. Here we explain how we made vsfold handle these issues and
present a theoretical justification for why these corrections are a phys-
ical manifestation of the Kuhn length and the local entropy presented in
the previous two Sections.
The global entropy generally tends to correct for cases like Figure 2A,

where Lstem>>ξ. In such stem-loops, the cumulative weight of the global
entropy renders the formation of such stems (Lstem>>ξ) unfavorable
when the compensating base pairing energies are insufficient.
Therefore, if the stem length (Lstem, in units of mer separation distance b)
is as long (or longer) than ξ (Lstem≥ξ), Figure 2A), then the discussion
in the previous two Sections can be applied with only a little modifica-
tion. However, when (Lstem<ξ, Figure 2B), this means the region should
be straighter and more inflexible than expected and forces are needed
to enforce this state condition. The two interacting strands that form the
stem should easily tear apart because the unbound regions (Dx=ξ-Lstem,
Figure 2B) have nothing to hold them down. Inasmuch as polymers form
bramble-like patterns, these twisted structures must reflect some sensi-
ble function of the polymer’s Kuhn length: an experimentally discernible
quantity for which an average value can be measured from the radius of
gyration of the polymer. The accounting methods in the previous two
Sections do not exact a cost for the formation of brambles, like in Figure
1B, that are inconsistent with the actual Kuhn length: stem structures
should be roughly as long (or longer) than the Kuhn length.
It is known that dsRNA (i.e., without the folded ssRNA looping) and

dsDNA can achieve Kuhn lengths on the order of 50 nm (about 150
bps).18,21,29,44,57 However, well below the melting temperature, dsRNA con-

sists of a single contiguous stem and does not contain large regions of
loops where disordered structure is likely. Near the melting tempera-
ture, this disorder is modeled in dsDNA with a loop entropy and a much
smaller Kuhn length.21,29 Folded ssRNA typically consists of contiguous
stems that are much shorter than 150 bps (commonly 5 to 10 bps).37-39,43

It therefore makes no sense in folded ssRNA problems to claim that stem
regions have a Kuhn length of 150 bps, when the longest coherent stem
in the structure is only 5 bps or even 10 bps. Kuhn lengths should be
properly accounted for in the FE; particularly because the stem lengths
and single strand lengths are often of similar order. One way to do this
is to propose an average Kuhn length (as is done in vsfold currently)
and hope that the FE functions are forgiving enough to compensate for
small discrepancies. This approach appears to be fairly successful for
many types of RNA structures. However, surely some local information
about the flexibility will be lost. Therefore, we propose that a reasonable
method of accounting for the FE due to changes in flexibility is one
where, in the free strand regions, the Kuhn length is about 3 nt (as
some models for dsDNA melting propose for the bubble
regions)9,10,27,28,31,32,59,74 and, in the stem regions, we propose that the
Kuhn length should be proportional to the length of the stem (Lstem,
Figure 2C). There are a plethora of issues associated with defining a
stem that we cannot afford to delve into here. Nevertheless, it should be
reasonable, we think, to say that something that looks reasonably con-
tiguous probably is, and something that looks like a junction, probably is
not contiguous and therefore not part of a stem.
In Equation (18), in the limit of long ξ, 

(34)

i.e., the FE approaches that of a set of N free particles. For g=1,
DG≈(1/2)NkBT and for the standard value (g=1.75) used in the JS-
model, DG≈(3/4)NkBT. 
[Note that, since the total translational kinetic energy of N free par-

ticles is (3/2)NkBT and DG (when g=1.75) is half this value, the local
entropy (corresponding to DG) is essentially expressing a tethered sys-
tem in which half is free and half is constrained (where the translation-
al motion is neglected in the free dimensions). Since these are simply
beads on a chain, they are effectively particles. The equal partition of
the energy means that the kinetic energy of the free particle is (3/2)kBT.
Hence, the calculated value with g=1.75 has a physical basis and the
free motion of the tethered system is fractal and not completely 2D as
would be the case were this a pure Gaussian type chain (g=1)]. 
We are concerned with stem segments that are shorter than the Kuhn

length Lstem<ξ. We define the difference 

(35)

which expresses the additional artificially constrained stem length.
Since the stems come together and interact independently, the interac-
tion of the unbound regions is the sum of all possible configurations
(Figure 2B). Based on the simple linear relationship for ξ in Equations
(27) and (34), this suggests that we should integrate, which yields

(36)

where the weight 1/D is omitted because the entropic contribution of
bps to the FE is not added to this FE. This freezing out cost is usually
paid by contributions from bps formation; as noted in previously, the
average is around -25 cal/molK for both RNA and DNA.69,70 These highly
local bp formation costs are generally applied as a constant for some set
of dinucleotide bps. However, for the structure in Figure 2B, these costs
must be born solely by the fictitious stem and therefore, the best
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Figure 2. Examples of different cases for the Kuhn length (ξ) and
stem length (Lstem). A) Case where Lstem >>ξ. B) Case where Lstem

<<ξ. C) Case where Lstem =ξ.
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accounting we can do is to restrict all 3Dξ degrees of freedom.
The quantity DGbend is defined as the stem bending/destabilization FE.

The property is only invoked when the stems are shorter than ξ and the
property tends to be the main factor enforcing a straighter structure
within the RNA and protein structure calculations.6 The exact form of
this interaction is unknown; however, based on computer experiments
using vsfold, we found that a quadratic function in Dξ was effective in
rooting out distortions such as those seen in Figure 1B. 
It also follows that, because ξ is finite in dsRNA, there is some max-

imum (ξmax) for the stem in folded single-stranded RNA such that 

, (37)

where the best value should be ξ≈Lstem.
For example, when Lstem >>ξ (Figure 2A), the global entropy exacts a

large cost. Likewise, if Lstem <<ξ (Figure 2B), then the local entropy
exacts a large cost. If ξ and Lstem are nearly equal (Figure 2C), the weight
of this contribution is simply the local contribution. Therefore, a proper
value for ξ in the stem region is ξ≈Lstem and the minimum local free
energy for the segment occurs when DG(ξ)=DG(Lstem). The way to esti-
mate ξmax will have to be discussed elsewhere, but ξmax can reach
lengths in excess of 200 bps in dsRNA.
Equation (36) can also be understood from the worm like chain

model. Landau and Lifshitz (LL)73,75 describe the deviation of a polymer
chain from a straight rod as the inner product of two unit vectors ta and
tb that run along the thread of the polymer chain, separated by a dis-
tance Dn=Dξ (in units of mers), Figure 3. From this, LL obtain a rela-
tion for the average deviation of the inner product angle

(38)

where k is the bending force constant (in units of energy) for small
angle deviation θ (in units of radians). At high temperature, the mean
square distance between the ends of the chain is〈r2〉=2Nkb2/kBT. From
Equation (1),〈r2〉=ξNb2, hence ξ=2k/(kBT). In essence, kµξ. In this

important respect, the Kuhn length can be treated largely in the same
way as the persistence length and is equal to roughly twice the persist-
ence length. 
Since the joining of the two chains into a single chain requires both

chains to be independently straight over their joining contour lengths, the
entropy cost that both segments will accumulate, to maintain the addi-
tional mutually binding segment (Dn=Dξ) and to satisfy ξ=Lstem+Dξ, is

which is a similar form to Equation (36).
Note that ξ=2k/kBT is only valid for an isolated polymer, at best. It

should not be assumed that this can be blindly applied to real polymer
systems where other materials in the system (e.g., other proteins in a
cell) exert complex forces on that polymer.

The cross-linking entropy model
and the Jacobson-Stockmayer equation

We have shown a general description of the CLE model. Now we show
how we can reduce the CLE model to the terms found in the Jacobson-
Stockmayer (JS) equation that is used in current RNA structure predic-
tion schemes.67,76

As explained in Part I (second Section), the JS equation was derived
from theoretical considerations;77 however, the currently used Jacobson-
Stockmayer equation is an empirical expression

, (39)

where n
L
is the number of bases in a hairpin loop and A

JS
is a constant

obtained by fitting many sequences and finding the best fit.67 Specifically,
for loops less than 30 nt in length (and particularly so for loops less than
8 nt), Equation (39) is substituted with constant values based on these
fits. For lengths greater than 9 nt, Equation (39) is used. 
Figure 4 shows the FE contribution to loop formation at 37°C for sev-

eral RNA data sets for the hairpin loop penalties plotted as a function of
n
L
and fitted using Equation (39); from the legend (magenta circles)

mfold 3.0 (black circles)67 mfold 2.378,79 – data obtained from the
Wisconsin package (GCG) e99 parameter set – and (blue circles) the
GCG e98 parameter set. The JS-equation is based on simplifications of
the Gaussian polymer chain: two implicit (d≡2 and n≡1/2) and one
explicit (g≡1.75). Fitting the e99 and e98 data sets using Equation (39)
with variables g and A

JS
(T

37
=310.15K, i.e., 37°C), yields the following:

A
JS
T
37
=3.01±0.09 kcal/mole and g=1.65±0.06 for e99, and A

JS
T
37
=3.3±0.1

kcal/mole and g=1.8±0.1 for e98. 
The mfold 2.3 and 3.0 sets already have a fixed value for n

L
>9 nt. For

mfold 3.0, A
JS
T
37
=4.0 kcal/mol. Hence, the parameter g agrees closely to

g=1.75, but A
JS
differs between the three fits. Nevertheless, all data sets fit

reasonably well to a logarithmic curve (of course, particularly for n
L
>9). 

All the data sets show considerable scatter for n
L
<9 nt, where mfold 3.0

is the largest but also has the most data to support it.68,80 The case of n
L
=4

nt is consistent with the fact that the loop size (tetraloop) is of similar
length scale to the Kuhn length of the free strand regions. Special correc-
tions for unusually stable tetraloops are also used.81,82 Likewise, for n

L
=3

nt, the increase in FE mainly accounts for the triloop length, and specific
loop sequences have their own specific corrections.83

Since A
JS
is a single value for all hairpins, we suppose that Equation

(39) expresses the properties of a generic stem-loop structure and that
using these characteristic parameters in the CLE model will generate
Equation (39) and A

JS
from first principles. 
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Figure 3. Cartoon describing the vector notation in the Landau
and Lifshitz derivation of the end-to-end distance based on the
worm-like chain model. The vectors ta and tb are along the con-
tour of the polymer (Dn), and the angle between them (θ) is based
on the inner product of the two vectors. 
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First, from Equation (8), assuming d≡2 and n≡1/2, the global contri-
bution to the entropy-loss due to the formation of a stem-loop of bps
becomes 

, (40)

where Ψ1/2 = ξ / l2 [Equation (8)], {ij} is the set of base pairs compris-
ing the stem and is the average stem length of our generic RNA stem-
loop structure. Certainly for large Nij, the leading contribution to the
entropy-loss comes from the first term inside Equation (40) and 1/(Ψ1/2

Nij) can be neglected. Since Equation (40) ratchets up with each addi-
tional base pair, if we form a stem of length =ξ, the FE-contribution
from the entropy-loss (due to stem formation) is approximately

, where is the midpoint of the stem. This is essential-
ly what happens in the examples we show in the Appendix (Figures A1
and A2). This yields the second (variable) term in Equation (39), viz.

. (41)

Note, however, that Equation (39) refers to the free strand in the
hairpin loop (n

L
=j-i-1) whereas Equations (40) and (41) refer to the

cross-link: respectively, Nij=j-i+1 and (with and denot-
ing average positions of i and j). Hence, based on Part I of this series
and the treatment here, a better approximation might be expected to
come from evaluating this contribution from the midpoint of the stem. 
Second, we incorporate the concepts of the local CLE introduced ear-

lier. To do this, we must also consider that stems are typically stiff and
loop regions are typically flexible. Reference 1 shows how to incorporate
a variable Kuhn length into the global entropy. When the sequence is
subdivided into stiffer and looser regions, the CLE can evaluate these
variations independently. This fact allows us to suppose two distinct
Kuhn lengths: one for loops (ξL) and one for stems (ξs). 
Now we suppose that the constant (A

JS
) in the JS expression comes

from the renormalization constant (DGξ /Ñ): introduced in Equation
(18) and Equation (20) as applied to a generic stem-loop structure

(42)

where is the derived JS constant (A
JS
), becomes the average

stem length and is the average loop length of the generic RNA stem-
loop structure. The factor of two in Equation (42) is from the fact that
the two independent single-stranded parts of the chain must join togeth-
er to form the double-stranded helix of the RNA stem and each segment
achieves this new Kuhn length independently.
To compare the CLE model with JS-model in Equation (39), we use all

the same parameters as the JS model. We fit the various versions of the
JS parameters to 

(43)

using the adjustable parameters , , ξL, and ξs. Note that Equation
(42) should generally use n

s
and n

L
, yielding a more general expression

DScle=DSL+DSlocal. Hence, is understood to express an averaged
local correction ( ).

In Table 2, the JS-model for a hairpin loop of RNA (using mfold 3.0
parameters) is compared with the CLE model for the same hairpin loop
calculated at T

37
. The stem length is fixed at 8 bps and the loop length is

permitted to vary between 4 nt and 30 nt. The best fit turned out to be
nt (with ξL=2.5 nt) and bp (with ξs=8 nt).

With these settings, the value of is close to AJS using mfold 3.0

parameters. This differs from the mfold 2.3 parameters where the best
fit turned out to be nt (with ξL=3.0 nt) and bp (with ξs=7
nt), yielding A

JS
T
37
=3.30 kcal/mol. For the GCG e98 parameter set, we

found that a good fit was [bp], [nt] with ξs=5.0 [bp] and
ξL=10.0 [nt], yielding AJS

T
37
=3.06 kcal/mol, which is rather skewed com-

pared to the new parameters. The findings in this Section show exactly
why the mfold 2.3 and 3.0 JS-parameters are significantly improved.
Recall that A

JS
was originally determined by fitting the parameter (A

JS
)

to a large training set of sequences with known RNA secondary struc-
tures. Therefore, it is implicitly a mean value. Since a typical catalogue of
loops and stems would likely contain many loops of length 3 to 8 nt and
many stems of length 5 to 10 bps, these parameter setting are a very rea-
sonable estimate for a generic stem-loop. Table 2 shows that the constant
A
JS
comprises the renormalization contribution for a generic stem-loop of

RNA with stem length 8 bp (ξs=8 nt) and loop length 8 nt (ξL=2.5 nt). The
CLE model generates the JS-model from first principles. 
The JS equation also originates from the same Gaussian polymer

chain model discussed from the second Section to this point. (A deriva-
tion of it can be found in Part I of this series in Appendix A). From this
perspective, we see that the Jacobson-Stockmayer equation is an
impressively simple (and often effective) way to model rather short
regions of generic stem-loop RNA structures.
Finally, as mentioned in Appendix A of Part I, the empirically derived

value for A
JS
(that fits the training data set) cannot be generated from

theory by using the JS equation in its original form.77 It can only be
obtained by evaluating Equation (42), or a similar expression, to find

. In Part I (Appendix A), it was shown that the JS equation yields a
constant of the form

(44)

Since the size of the bound structure should be on the order of ξb,
this means that vs≈(ξb)3. Substituting into Equation (44), we find

Article

Figure 4. Plot of the hairpin-loop free energy data (at 37°C) for
different loop lengths (nL) and for 3 different parameter sets:
(magenta circles) mfold 3.0 parameters,68 (open blue circles)
mfold 2.3 parameters from GCG e99 table,78,79 (open black cir-
cles) parameters from the GCG e98 table. 
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(45)

For a typical value such as ξ=5 mer, A
JS
is negative. Hence, even aim-

ing to fit this with realistic values for ξ (which is not even in the origi-
nal formulation), AJS>0 simply cannot be satisfied. This is why AJS

has
historically been treated as an experimental parameter.
It should also be noted for the record, that in the original derivation

of the JS equation, the existence of a Kuhn length (stiffness) was
acknowledged.77 However, issues related to the Kuhn length (and partic-
ularly the nature and size of vs) were rarely considered explicitly in sub-
sequent usage of the JS expression.

Errors generated by invoking
a static Kuhn length

As justified in previous work,1 in the previous Section, we used a
model with a variable Kuhn length where the stems were assigned ξ=7
nt and the loop ξ=3 nt. However, vsfold currently calculates the FE under
the assumption that the Kuhn length is constant over the entire RNA
sequence. Here we consider how such errors may affect the calculation.
In methods that assume a static ξ (like vsfold), a typical error is to

overestimate the Kuhn length in the loop regions (ξL) where there is
greater flexibility and constraining stem lengths to some predetermined
fixed stem length (ξs). As mentioned in the Section on stem destabiliza-
tion, vsfold will usually reject stems much shorter than the Kuhn length
because the stabilization costs render such stems highly unfavorable.
Therefore, it is important to understand the contributions to the error
introduced by using a Kuhn length larger than the true value as often
occurs when fitting with a static Kuhn length. 

Figures 5A and 6A compare the deviation in FE when a static ξ is used
on the whole structure (DG(sum,S)) with the case where a variable
Kuhn length (DG(sum,V)) is used on the same structure. In both
Figures, the same structure as the previous Section is used: a structure
with stem length of 7 nt and a variable loop length. For the variable
Kuhn length structure in Figures 5 and 6, the fit uses ξs=7 nt for the
stem and ξL=3 nt for the loop region. For the static Kuhn length, ξ=5 nt
in Figure 5 and ξ=7 nt in Figure 6. The static Kuhn length of ξ=5 nt is
used because it is the average of 3 and 7 nt. Similarly, the static Kuhn
length of ξ=7 nt is tested here because the most common problem faced
in fitting structures using vsfold (with a the static Kuhn length) is an
over estimate of the entropy corrections in the loop regions. Unlike the
previous Section, here we use the actual stem lengths and loop lengths
to compute the local entropy correction

(46)

i.e., not just the mean loop length as in Equation (42). 
Figure 5B shows the deviation in the FE due to using a static Kuhn

length of 5 nt, where the total deviation DDG(sum,V-S) expresses the
difference between DG(sum,V) and DG(sum,S) in Figure 5A (red data
points with green dashed line). The static Kuhn length has a total error
[DDG(sum,V-S)] that is typically less than ±0.2 kcal/mol. Similarly,
Figure 6B shows the same deviation in the FE due to using the greatly
oversized static Kuhn length of 7 nt. Clearly, there is far greater devia-
tion when the Kuhn length is much larger than it should be (3 nt vs 7 nt
in the loop region). 
Figures 5B and 6B also compare the deviation in the global entropy con-

tribution [indicated in the legend by DDG(global,V-S)] and the deviation
in local entropy contribution [indicated by DDG(local,V-S)] due to the use
of static Kuhn lengths 5 and 7 nt, respectively. Errors in the global entropy
correction to the FE have a positive slope in both Figures because the true
Kuhn length in the loop region is 3 nt and using 5 nt and 7 nt for the stat-
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Table 2. A comparison between the JS-model (used in typical RNA secondary structure calculations) and the CLE model (discussed here)
on a hairpin loop of length nL and stem of length 8 bps. The temperature is set to the standard T37 value. For the CLE model, the Kuhn
length of the stem region is set to 8 nt and the loop region 2.5 nt. The parameters used in Eqns (8) and (20) are d≡2, g≡1.75, and n≡1/2
(exactly the same parameters as used implicitly and explicitly in the JS-model). Stem-loop lengths are discrete in the CLE model.  For the
average stem-loop, we used [bp], [nt]. Column 1 indicates the loop length, Column 2 is the global CLE contribution (Eqn
(8)), Column 3 is the local CLE (Eqn (20)), Column 4 is the sum of Columns 2 and 3, Column 5 indicates the tabulated mfold 3.0
Jacobson-Stockmayer parameters,68,80 and the last column is the difference between Columns 5 and 4. This shows that −T37DSlocal≈AJST37.

Loop Cross linking entropy model JS-model Difference

length Loop Local Sum

nL −T37DSL −T37�AJS≈ −T37DScle= −T37DSJS(nL) −T37D(DS)=

–T37DSlocal –T37�(DSlocal+DSL) –T37[DSJS(nL) – DScle]

[nt] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol]

4 2.113 3.873 5.986 5.600 -0.386
5 2.226 3.873 6.099 5.600 -0.499
6 2.331 3.873 6.204 5.400 -0.804
7 2.428 3.873 6.301 5.900 -0.401
8 2.519 3.873 6.392 5.600 -0.792
9 2.604 3.873 6.477 6.400 -0.077
10 2.685 3.873 6.557 6.500 -0.057
15 3.026 3.873 6.899 6.940 0.041
20 3.299 3.873 7.171 7.250 0.079
25 3.526 3.873 7.398 7.490 0.092
30 3.720 3.873 7.593 7.690 0.097

no
n c

om
merc

ial
 us

e o
nly



[page 14] [Journal of Nucleic Acids Investigation 2013; 4:e2]

ic case underestimates the cost of forcing a looser chain with far more
degrees of freedom to close. Errors in the local entropy correction to the
FE have a negative slope in both figures because the local entropy contri-
bution in the loop region (for ξL=3 nt) should be small. As a result, the
local entropy correction with a static Kuhn length over-scales the free
energy correction that was developed in the Sections on the derivation of
the local CLE. The global error in Figure 5B starts out negative because
the entropy contribution from the stem is underestimated. A crossover
can be seen when the loop length reaches 10 nt. In this respect, slightly
over-scaling the loop region and under-scaling the stem regions produced
a nice balance for the static Kuhn length of 5 nt. In Figures 5B and 6B, the
errors from the global and local contributions are largely self-canceling. In
Figure 6, because an overall over-scaled value of 7 nt is selected for the
static Kuhn length, the errors gradually grow significant. However, the
total sum still exhibits a relatively slow deviation. 
It should be clear that finding a good average value for ξ is certainly

best. Nevertheless, the error introduced by a moderately poor choice is
largely ameliorated by the self-correcting effects of the local and global
contributions to the total entropy. Hence, there is only a gradual change

in the baseline for improper values of ξ. Moreover, the error is an over-
estimate of the entropy contribution. Hence, when using a static Kuhn
length, our best results will come only when we chose a good average
value in general. For long sequences of highly variable ξ, it is unlikely
that such a value for ξ can be found. Moreover, it should be remembered
that these errors are cumulative, rendering calculations with a static
Kuhn length all the more problematical. Therefore, a method for calcu-
lating with a variable Kuhn length is an important area of development
for future versions of vsfold.

Strategy for calculating a variable Kuhn length

From Equations (25) and (46), we showed how to include the FE cor-
rections with a variable Kuhn length for a stem-loop. For the simple
stem-loop structure in Equation (46), it is not difficult to carry out such
a calculation. However, when many calculations must be done for many
different structures, this becomes a cumbersome issue. To simplify this
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Figure 5. The error caused by using a static Kuhn length ξ=5 nt com-
pared to the variable Kuhn length, for a structure with a stem of
length 7 bp and a variable loop length (3 to 30 nt). The variable
Kuhn length uses 7 nt for the stem and 3 nt for the loop. The static
Kuhn length uses ξ=5 nt throughout. (A) The CLE contribution to
the free energy (entropy loss) for the static Kuhn length (�G(sum,S))
and the variable Kuhn length (�G(sum,V)). (B) The differences in the
CLE contribution to the free energy, where ��G(sum,V-S) =
�G(sum,V) − �G(sum,S). These differences are further divided into
the global ��G(global,V-S) and the local ��G(local,V-S) contributions.
The negative slope in ��G(sum,V-S) indicates that the FE obtained by
using the static Kuhn length tends to overestimate the entropy loss.
ξs=7[bp] and ξL=3.0 [nt].

Figure 6. The error caused by using a static Kuhn length ξ=7 nt
compared to the variable Kuhn length for the same stem-loop
used in Figure 5, where the same parameters as Figure 5 are used
for the variable Kuhn length. (A) The CLE contribution to the
free energy (entropy loss) for the static Kuhn length (��G(sum,S))
and the variable Kuhn length (��G(sum,V)). (B) The differences in
the CLE contribution to the free energy, where ��G(sum,V-S) =
�G(sum,V) − �G(sum,S). These differences are further divided into
the global ��G(global,V-S) and the local ��G(local,V-S) contribu-
tions. The negative slope in ��G(sum,V-S) indicates that the FE
obtained by using the static Kuhn length tends to overestimate the
entropy loss. 
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and facilitate corrections in a general object oriented programming
approach, we suggest working from Equation (19). 
As discussed in the Section deriving A

JS
, the average Kuhn length in

the free strand regions is approximately 3 nt, based on fitting A
JS
to ξL

and experimental data from References 37-39. Therefore, we use ξbl=3
nt as the baseline correction. The baseline FE is therefore Dg(ξ=3).
Now, to calculate other Kuhn lengths in the stem regions, we first
rewrite Equation (18) in terms of Equation (19) as a free energy per nt 

, (47)

and the local entropy contribution to the FE for a subsequence of length
n is nDgnt(ξ). If the Kuhn length differs from the baseline value (ξbl),
the new Kuhn length must be added with the baseline value subtracted
out. In a stem region where the length of the stem is Lstem, the Kuhn
length for the dsRNA sequence (ξds) becomes ξds≈Lstem (Section on stem
destabilization). Hence the corrections to the local entropy become

(48)

where it is assumed that ξbl=3 nt and ξds≈Lstem≥3 nt. Therefore, to the
baseline free strand (ξbl=3 nt), we simply add Equation (48) for any
cases where we find ξds>3 bps. Then the total local entropy becomes

(49)

where {s} is the set of stems that are formed in the RNA structure. 
The remaining correction is the loop regions in contiguous stems, a

group of stems joined by interior loops that are too short to render the
group effectively independent and are therefore effectively a single
stem.4 We think corrections should be made for these because they are
probably stiffer than the standard free strand, but their presence in a
stem indicates that they are not simply the same as the rest of the stem.
Functional RNA likely takes advantage of this to help melt the stem
slightly to achieve a more desirable flexibility. At this point, we only sug-
gest that, as in Equation (48), we can apply the same strategy

(50)

where ξ
I
≥3 could be evaluated as a function of the interior-loop separa-

tion-distance of the two stems and the total Kuhn length of the stem
itself. These aspects will be examined in a future study and should also
be tested experimentally. 
Future plans are to incorporate a variable Kuhn length model into the

vsfold program.
Now that we have constructed the calculation methodology, as a final

step, it is worth testing the model in a real problem to see if, in fact, the
model yields results that make sense. 
To help motivate this, we use the sequence in Table 1 of part I of this

series where the FE of a modified version of the HIV-1 tar sequence was
evaluated using both mfold 2.3 and 3.0 base pairing parameters. It was
clear in that study that the CLE model is less sensitive to the base pair-
ing parameters. However, at that stage, we could not dig into the details
of the part played by the local entropy.
For computing the structures in the previous two sections, ξ≈3 nt in

the free strand region and ξ≈Lstem for the stem regions. Whereas this is
certainly computationally convenient, the sharp boundaries between the
stem and free strand Kuhn lengths seem better suited to a continuous
function in which the Kuhn length of the hairpin loop extends partway
into the stem region (presumably gradually increasing). Edge effects
are known for stems,69,79,84-86 perhaps extending 2 to 4 bps into the stem.
Figure 7 shows this penetration into the stem region in terms of
Equation (49), where the loop region is corrected for as though the loop
region penetrated 2 bp, 4 bp, 6 bp and 8 bp into the stem. 
A permeation of the free strand flexibility 8 bp into the stem region

seems excessive. However, the edge effects from the 5’-3’ ends of the
stem-loop could add 4 bps and the hairpin side contribute the other 4
bps. (We did not correct for the global entropy at the edges, which
should sharpen the boundaries.) If penetration into the stem is at least
2 bps from each end, this would explain why tRNA tends to have a Kuhn
length of 4 nt throughout and why the Kuhn length does not expand if
an extended structure can form. For tRNA, the free strand region (at
both ends of the stem) penetrates too deeply for the RNA to stiffen into
a straight stick shape. 
In Figure 7, the FE tends to flatten out over a wide range of the Kuhn

lengths for a penetration distance of 8 bps, ξds could range between 13
to 20 bps in the center region of the stem. This suggests an average
Kuhn length of about 12 nt, as suggested in the previous Section as a
good choice for a fixed ξ. A variable Kuhn length emerges as a conse-
quence of a synergy between base pairing FE effects (changing the glob-
al CLE) and the freezing out costs of at least ξ degrees of freedom in
each chain (changing the local CLE). Introducing a penetration distance
smooths out the competition: when a certain range of penetration of the
loop ξ is included, the minimum FE is achieved. Therefore, an ideal
model would require optimization of global and local entropy contribu-
tions to the FE in the context of base pairing and would require a con-
tinuous function for the Kuhn length. The precise nature of these func-
tion needs to be examined experimentally. This is the first attempt that
we know of where variation in the Kuhn length is attributed to changes
in the stem length. 
Figure 7 also affirms the previous assertion that the renormalization

process tends to leave the overall FE unchanged. Of course, the fixed
Kuhn length shows an increase with longer Kuhn length; however, when
the problem is solved more realistically with a variable Kuhn length, there
is a wide range of values ξ where the change is small. Moreover, even for
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Figure 7. Calculation of a modified HIV-1 tar sequence (shown at
the top of the graph) using a variable Kuhn length in the double
strand helix part and the effects of the free strand Kuhn length
penetrating into the stem region. Here a linear slope is used to
express the change in Kuhn length in the transition region.
Penetration is expressed in terms of bps and the free strand pene-
trates both ends of the stem equally. There is a clear flattening out
of the free energy over a large range of Kuhn lengths when even 2
bp of penetration is used.
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the fixed Kuhn length, the change is almost within thermal FE differences
even though the Kuhn length varies from 4 to 20 nt.
This study of a variable Kuhn length also reveals another interesting

aspect of RNA and protein folding. On the length scale of a Kuhn length,
melting temperatures are clearly cooperative, because the melting of
RNA has the typical sigmoid signature characteristic of this.13,87-89

However, the thermodynamics evinced from this study suggest that on
the macroscale, the overall character is more akin to order-disorder, if
we take the fundamental unit of the polymer to be the effective mer. In
other words, order-disorder on the scale of effective mers, cooperativity
on the scale of monomers. Since the stem is largely the de facto mer in
these systems, the effective mer is the unit of meaning in RNA biology.
Finally, the loop penalty (LP) model is the standard approach for cal-

culating secondary structure in RNA, the most common version are
mfold and the Vienna package. The LP-model has successfully predicted
secondary structure in many cases.78,90,91 The model relies on a
Jacobson-Stockmayer model to evaluate the loop entropy at the closing
point of a loop, and simply adds the base pair parameters for the dinu-
cleotide base pairs in the structure.77,92 This strategy appears to be suc-
cessful in many cases and does not require all of the extensive effort
that was needed to develop the CLE model. 
However, the LP model succeeds because of two errors that just so

happened to cancel each other. 
First, as shown in Part I, the standard model underestimates the glob-

al entropic correction in long contiguous stems. This unphysical behav-
ior encourages a straightening effect as a consequence. Because the
training set, used to tune these prediction approaches, tends to include
very stiff structures (long Kuhn lengths), it produces deceptive success
when the target structures have inherently long Kuhn lengths. Such
structures were easier to isolate experimentally and were the first found
and determined. The standard entropy model is fairly successful at find-
ing long straight stem structures, and if these also happen to be the
training set of structures, it is no surprise that at least some of the pre-
dicted results would agree with the experimental data. 
Second, all the experimentally obtained base-pairing thermodynamic

parameters for RNA were built from oligonucleotide sequences of the
same length and forming relatively short double-stranded sequences
(typically 8 bps), where it is assumed that these parameters are valid for
all stem lengths. It may indeed be possible to extrapolate their value for
all dsRNA sequence lengths; however, it is not known. 
The result was a chimera of relatively short range thermodynamic

parameters for the stems weighted against a highly biased long (double
strand) stem-search strategy. For a certain domain of problems often
encountered in the field, this balance has worked to some extent. 
However, in some cases, correctly predicted structures can require

some careful cutting at the 5’ and 3’ ends (manicuring) to force them to
come out with the structure that is actually observed experimentally. By
neglecting the Kuhn length altogether and underestimating the global
entropy costs, such approaches tend to generate poor predictions for
sequences significantly longer than 100 nt (though obviously, we can
expect some exceptions to any generalization). If one tries to insert
additional randomly generated sequences or even repetitive sequences
of the same structure plus some spacer, the original desired structure is
often destroyed (though exceptions exist). Minor changes in sequence
can produce major changes in the structure even when it is known that
it should not (see for example, the comparison of predictions for tRNA
sequences in Reference 1, Figure 7 and part I of this series). There is
no discernible order in the energy of suboptimal structures and the loca-
tion of the experimentally observed structure can be mixed in with the
suboptimal structures like a needle in a haystack.61

In our first attempt to apply the CLE model in Reference 61, suboptimal
structures from mfold 2.3 calculations (using the GCG package with e99
parameters) were recalculated using the CLE-entropy with the loop penal-
ties used in mfold 2.3 subtracted out. It was essentially a filtering or re-

ranking program. Because of the tendency for the LP-mode to over-predict
long straight stem structures (as shown in Part I of this series), this made
it easy for the filtering program to sort out the best available predictions
from the list of suboptimal structures. However, because our first
approach lacked any computational methodology to enforce a straighten-
ing effect of its own as a function of the Kuhn length (as developed in the
Section on stem destabilizing FE), when only the global entropy was used
to independently predict structures rather than just filter prediction
results, the local effects of the Kuhn length soon became apparent. It was
not obvious that structure predictions require straightening and structur-
al constraints or filtering of the degrees of freedom to capture the charac-
teristic features of polymer behavior. In particular, it was not obvious
because of misleadingly successful predictions obtained by the common-
ly used LP-model (examined in Part I of this series).

Conclusions

We have derived and generalized the local entropy contributions in
the CLE model in this work for studies of RNA secondary structure and
RNA pseudoknot predictions. We have shown that the CLE model can be
reduced to the standard Jacobson-Stockmayer model using first princi-
ples and simplifying approximations. Hence, the CLE generalizes the
classic Jacobson-Stockmayer equation. We have also shown how to
extend these concepts to variable Kuhn lengths, and how to handle het-
erogeneous monomers with different mer-to-mer separation distances.
We have also shown how the Kuhn length is attributed to stem length
and how this flexibility can be modeled into biopolymers using the CLE
model. Whereas the use of a heterogeneous Kuhn length is far more
desirable both aesthetically and from the viewpoint of accuracy of infor-
mation, we also show here that, even when only an average Kuhn
length is used, the CLE model is often robust enough to compensate for
these deficiencies.
Future work is aimed at applying these concepts to double-stranded

RNA, DNA and protein systems. In addition, greater focus will be aimed
at modeling with a variable Kuhn length to help improve the prediction
abilities of the vsfold program.

Postscript
At the time of printing, further developments have been introduced

to describe the interface between the stem and free strand boundaries
and improvements have been made in the predictions in Table 2 with
this new information. These results are expected to be published
sometime in 2014.

Software
A binary version of vsfold5 is available upon request to the correspon-

ding author and upon written consent to the license agreement.
Available formats are 64 bit Linux (x86_64), or 32 bit Linux, Window
XP/7, and Mac OSX4-8. Requests can be emailed to vsfold@gmail.com or
dawson@bi.a.u-tokyo.ac.jp. A web version of the program can be found
at http://www.rna.it-chiba.ac.jp/vsfold5 . 
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