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Abstract 

Characterization of populations by means of
DNA techniques provides a tool for precise
identification and a quantitative estimate of
genetic diversity, crucial in evaluation of
genetic fragmentation within and among pop-
ulations. NBS profiling are PCR-based
approaches that sample genetic variation in
resistance genes (R-gene), and R gene
analogs (RGA). To date, myb patterns have not
been used for evaluating genetic diversity in
other species. NBS primers are homologous to
the conserved sequences in the Nucleotide-
Binding-Site of the NBS-LRR class of R-genes.
A total of 12 populations from five Campanula
species (C. barbata L., C. latifolia L., C. rapun-
culoides L., C. spicata L. and C. trachelium L.),
autochthonous of the West Italian Alps, were
genotyped via nucleotide-binding site (NBS)
and myb gene profiling. The selected markers
produced a total of 361 bands, showing high
levels of polymorphism. Genetic diversity
among and within species and population
structure was evaluated by different statistical
analyses performed using TREECON software,
Mantel Nonparametric Test, NTSYS package,
AMOVA and STRUCTURE. The correlation
between genetic variability and geographical
location suggests that the five Campanula
species have been subjected to long-term evo-
lutionary processes consistent with the natural
fragmentation of continuous mountains areas.

Introduction

The genetics of species whose preservation
is of great importance for biodiversity mainte-
nance has been of heightened interest to evo-
lutionary and conservation biologists in the
21st century.1 In particular, in conservation
studies, an important topic is the evaluation of
genetic fragmentation within and among pop-
ulations. The spatial distribution of genetic

diversity in populations is function of gene
flow, mutation, inbreeding, population size,
and social organization, and has been mod-
elled by biological, ecological, and historical
factors related to geo-climatic events.2-4 Over
the last few decades, the study and safeguard-
ing of genetic variation in nature for plastic
responses has progressed significantly.5-8

Campanula L. species might be considered
genetic resources able to persist under a wide
range of ecological conditions.9 In fact, their
habitat can vary considerably, from seashore to
very high altitude, with colonies found in all
major environments from forests to grass-
lands, and even in rocks.
In the West Italian Alps, five species deserve

highlighting above others: 1) C. barbata L. (2n
= 34;10), a hairy short-lived perennial or bien-
nial plant, growing in dry grassland on the
siliceous soils of the alpine regions of central
and boreal Europe; 2) C. latifolia Brantwood
(2n = 34;11), a perennial plant originating from
Northern Europe, growing in acidic soils and
forests in the Italian Alps and Northern
Apennines; 3) C. rapunculoides L. (2n = 68; 2n
= 102; 12,13), a perennial plant, growing on stony
and wooded areas of Europe, except for the
arctic regions and islands; 4) C. spicata L. (2n
= 34;12), a perennial plant, growing on stones
and cliffs and widespread in the Italian Alps
and Northern Apennines; and 5) C. trachelium
L. (2n = 34;14), a perennial species native to
Europe, from England, throughout the
Mediterrean basin, to Northern Africa.15

Molecular studies may prove useful in
improving spatial genetic variation knowledge
and for delineating evolutionary genetic
processes.16-19 Neutral markers such as ampli-
fied fragment length polymorphisms (AFLP20)
or simple sequence repeats (SSR21,22) are com-
monly used to screen collections. In previous
studies, the diversity and the structure in the
genus Campanula was studied using nuclear
(ISSR) and chloroplast (cpSSR) markers in C.
pollinensis Podlech and C. pseudostenodon
Lac.4 suggesting that the genetic differentia-
tion between subpopulations was caused by a
restricted gene flow.
Recently, nucleotide-binding site (NBS) and

myb gene profiling techniques have been
assessed in various genetic approaches. NBS
profiling is a PCR-based methodology for
studying genetic variability that specifically
targets NBS-TIR resistance genes and R-gene
analogs by using a degenerate primer based on
conserved motifs of these genes.23 This tech-
nique has already been used in apple,24 let-
tuce,25 potato, barley, durum wheat, and cauli-
flower23,26,27 to map genes related to disease
resistance (up to 95% of the amplified bands
relate to RGAs). MYB proteins constitute a
class of DNA binding proteins, which is partic-
ularly important for transcriptional regulation
in plants.28 This protein family is characterized

by having a structurally conserved DNA bind-
ing domain – the MYB DNA binding domain
which contains one (I), two (II), or three (III)
imperfect repeats. The two-repeat (R2R3)
MYB family is the most commonly identified in
plants and consists of 125 members in
Arabidopsis.29 The known functions of plant
MYB proteins include the regulation of second-
ary metabolism, control of cellular morphogen-
esis, and regulation of the meristem and the
cell cycle.30

In the present research, we evaluated NBS
and myb profiling in Campanula as tools for
genetic diversity studies, which we used to
investigate the i. genetic variations, and ii.
population structures in five species (C. barba-
ta, C. latifolia, C. rapunculoides, C. spicata and
C. trachelium).

Materials and Methods

Plant material
We sampled a total of 12 populations belong-

ing to C. barbata, C. latifolia, C. rapunculoides,
C. spicata and C. trachelium (Table 1) in the
West Italian Alps (Figure 131). The sampling
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areas ranged in size between 500 m and 6 km;
the distance between genotypes within popula-
tions ranged between 10 cm and 10 m.

DNA extraction and molecular
analyses
Total genomic DNA was extracted from

freeze-dried leaves using the Dneasy Plant
Mini Kit (QIAGEN, Santa Clarita, California,
CA, USA) according to the manufacturer’s
instructions. At the end of the procedure, the
columns were eluted twice with 100 µL of AE
buffer, after which they were stored at -20°C.
Three different restriction enzymes (MseI,
RsaI and HaeIII) and 10 primers (NBS1, NBS2,

NBS3, NBS5, NBS5a, NBS6, NBS7, NBS8,
GLPL6 and MYB223) were used in a total of 33
primer-enzyme combinations.
The NBS profiling was applied according to

the protocol described by van der Linden et al.23

with some modifications. Restriction digestion
and adaptor ligation were performed in a single
reaction by incubating 400 ng of DNA overnight
at 37°C. Amplification of NBS-specific frag-
ments was achieved through a two-step PCR as
described in the original protocol.23 The first
(linear) PCR reaction (5 µL of restriction-liga-
tion template, 2.5 µL of PCR buffer, 1 µL of 5mM
dNTP, 0.08 µL of HotstarTaq polymerase-
Qiagen, 2 µL of 10 pmol/uL NBS-specific primer
and adapter primer in a final volume of 25 µL)

was performed in a PTC-200 thermocycler (MJ
Research) using the following thermal profile:
15 min at 95°C to activate HotStarTaq poly-
merase, 35 cycles with 30 s at 95°C for denatur-
ing, 1 min and 40 s at 55°C (GLPL6, MYB2 and
all the NBS primers except NBS2) or 60°C
(NBS2) for annealing and 2 min at 72°C for
extension and a final extension at 72°C for 20
min at the end of the cycles. The linear PCR
was followed by an exponential PCR with
NBS/myb primer and an adapter primer fluo-
rescent labeled with IRD 700 or IRD 800 by
adding to the linear PCR product 10 pmol/µL of
each primer, 2.5 mM of dNTPs, 1 µL Supertaq
10 X PCR buffer and 5 U/µL supertaq poly-
merase in an end volume of 10 µL. The cycling
program was performed for 15 min at 95°C and
20 cycles of 30 s at 94°C, 1 min and 40 s at 55°C
or 60°C, 2 min at 72°C and a final extension at
72°C for 20 min. For visualization, 10 µL of Li-
Cor formamide with loading dye was added to
the PCR products. Samples were denatured for
3 min at 95°C, cooled on ice and loaded on a 6%
denaturing polyacrylamide gel using the Li-Cor
IR2 Genetic Analyzer (LICOR Biosciences,
Lincoln, NE USA).

Data analysis
We coded NBS and myb bands as present (1)

or absent (0) for each plant, creating a binary
data matrix.
Genetic distance were computed using the

formula proposed by Nei et al.32 1-2xy/x+y,
where xy is the number of shared bands by the
pair and x + y is the total number of bands of the
pair. We performed the cluster analysis, apply-
ing Neighbor-joining, using arithmetic means33

with the TREECON software.34 By applying the
same software, we estimated the statistical sta-
bility of the branches in the tree by bootstrap
analysis with 1,000 replicates. Mantel analysis35

was conducted by using the Mantel Non -para-
metric Test Calculator for Windows, version

Article

Table 1. Sampled Campanula species and populations with their identification code (ID), geographical location, soil, latitude (La.),
longitude (Lo.), altitude (Al.) and sample size (n).

ID Species Location Soil (substrate) La. (N) Lo. (E) Al. (m) n

Rap1 C. rapunculoides Gesso Valley grassland 44°15’29.65’’ 7°23’04.30’’ 830 6
Rap2 C. rapunculoides Gesso Valley grassland 44°18’02.66’’ 7°27’19.47’’ 719 6
Rap3 C. rapunculoides Vermenagna Valley scrub 44°14’06.03’’ 7°31’49.34’’ 980 4
Rap4 C. rapunculoides Troncea Valley scrub 45°01’30.61’’ 7°04’23.04’’ 1818 6
Lat1 C. latifolia Monferrato grassland 45°05’18.11’’ 8°02’22.21’’ 447 3
Lat2 C. latifolia Sesia Valley rockwall 45°51’14.32’’ 7°56’11.23’’ 1203 6
Trach1 C. trachelium Stura Valley grassland 44°20’39.48’’ 7°01’55.99’’ 1245 6
Trach2 C. trachelium Monferrato grassland 45°06’32.29’’ 8°01’30.11’’ 410 6
Barb C. barbata Lanzo Valley grassland 45°21’55.22’’ 7°20’25.26’’ 1880 6
Spic1 C. spicata Sesia Valley rockwall 45°49’54.28’’ 7°57’24.20’’ 1150 6
Spic2 C. spicata Sesia Valley rockwall 45°49’19.93’’ 8°09’25.43’’ 614 6
Spic3 C. spicata Varaita Valley scrub 44°33’58.33’’ 7°21’06.96’’ 1812 6

Figure 1. Sampling site distribution of the five Campanula species in Piedmont
(Northern Italy). Non
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2.0036 (http://www.terc.csiro.au/mantel. htm) in
order to compare the matrices of the myb and
NBS data. The significance of the statistic was
evaluated by permutations (1000x) and
expressed as a probability.37

We performed Principal Coordinate Analysis
(PCoA) based on the estimated similarities.
We plotted the first two axes according to the
extracted Eigen vectors, using the software
package NTSYS-pc version 2.1 (Applied Bio -
statistics Inc., NY, USA38).
We calculated the total genetic diversity in

variance components among and within popu-
lations through the Analysis of Molecular
Variance (AMOVA39) with 1,000 permutations
using AMOVA 1.5 package software.
The program STRUCTURE 2.2.3 based on a

Markov chain Monte Carlo (MCMC) algo-

rithm was used further to detect genetic strat-
ification using the admixture model.40

Patterns of genetic structure in the 12 popu-
lations comprised from five Campanula
species were analyzed in the entire data set
with four separate runs at each K from 6 to
14. After preliminary analyses to determine
the adequate burn-in and number of MCMC
Reps generations, we decided to use a burn-
in period of 50,000 generations, a run length
of 200,000 generations and 10 iterations at
each K. We used a modal value of ΔK to
assess the most likely K.41 Specifically, we
classified an individual into a cluster when
the assignment probability was more than
0.75. In other words, when an individual
showed a color for more than three-quarters
of its area, it was allocated to the correspon-

ding population. When it did not, the geno-
types displayed admixture, indicating gene
flow between populations or even hybridiza-
tion between species.

Results

Level of polymorphism and
discriminating capacity
We tested three samples from each popula-

tion against thirty-three primer-enzyme combi-
nations. The generated fingerprints were eval-
uated for the overall clearness of the banding
patterns. We selected four primer-enzyme com-
binations for further screening on 67
Campanula samples: GLPL6-MseI, GLPL6-RsaI,

Article

Table 2. Number of unique banding patterns in the studied Campanula species obtained by means of myb and NBS primer-enzyme
combinations. In brackets, the percentage of unique banding patterns per species is reported.

Total C. rapunculoides C. latifolia C. trachelium C. barbata C. spicata
N. of Accessions 67 22 9 12 6 18

Marker
NBS2-HaeIII 24 (0.35) 10 (0.45) 6 (0.66) 8 (0.66) 1 (0.16) 8 (0.44)
GLPL6-MseI 22 (0.32) 6 (0.27) 5 (0.55) 4 (0.33) 1 (0.16) 11 (0.61)
GLPL6-RsaI 13 (0.19) 4 (0.18) 7 (0.77) 2 (0.16) 2 (0.33) 5 (0.27)
NBS profiling 17 (0.25) 8 (0.36) 4 (0.44) 8 (0.66) 1 (0.16) 5 (0.27)
MYB-MseI 20 (0.29) 8 (0.36) 3 (0.33) 3 (0.25) 1 (0.16) 7 (0.38)

Table 3. Mean pairwise similarity matrix based on Nei and Li matrix between the five Campanula species performed on: (a) joined myb
and NBS data, (b) myb data and (c) NBS data. In brackets the mean similarity values within the species.

a
Species C. rapunculoides C. latifolia C. trachelium C. barbata C. spicata

C. rapunculoides 1 (0.568)
C. latifolia 0.314 1 (0.521)
C. trachelium 0.352 0.283 1 (0.510)
C. barbata 0.288 0.380 0.243 1 (0.676)
C. spicata 0.381 0.336 0.327 0.305 1 0.526)

b
Species C. rapunculoides C. latifolia C. trachelium C. barbata C. spicata

C. rapunculoides 1 (0.606)
C. latifolia 0.343 1 (0.614)
C. trachelium 0.382 0.295 1 (0.548) 
C. barbata 0.326 0.458 0.305 1 (0.761)
C. spicata 0.361 0.293 0.321 0.309 1 (0.540)

c
Species C. rapunculoides C. latifolia C. trachelium C. barbata C. spicata

C. rapunculoides 1 (0.564)
C. latifolia 0.324 1 (0.424)
C. trachelium 0.380 0.304 1 (0.512)
C. barbata 0.309 0.339 0.291 1 (0.688)
C. spicata 0.399 0.349 0.368 0.325 1 (0.509)
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NBS2-HaeIII and MYB2-MseI. We identified a
total of 361 unambiguously scorable bands with
the number of bands generated by each primer-
enzyme combination ranging from 47 (NBS2-
HaeIII) to 131 (MYB2-MseI), with an average of
90 polymorphic loci per combination.
In order to provide information on the differ-

entiating capacity of each marker, we calculated
the number of unique banding patterns per
primer-enzyme combination (Table 2). In the 67
campanulas, the NBS and myb profiling primers
produced a similar number of banding patterns,
17 and 20, respectively. Only in C. trachelium
the number of banding patterns for NBS was
more than double the value found for myb pro-
filing. Among NBS markers, C. rapunculoides
and C. trachelium were better discriminated by
the combination of NBS2-HaeIII while C. latifo-
lia and C. barbata were best by GLPL6-RsaI and
C. spicata was best by GLPL6-MseI.

Genetic diversity
We used several approaches (AMOVA,

Principal Co-ordinate Analysis, assignment
test), comparing for consanguinity, to estimate
the genetic diversity among and within
species.
Between species, the mean similarity values

(Ht) obtained by the joined NBS and myb data
sets ranged from 0.243 (C. barbata and C. tra-
chelium) to 0.381 (C. spicata and C. rapuncu-
loides; Table 3a). When myb profiling was
used, the values ranged between 0.382 (C.
rapunculoides and C. trachelium) and 0.293
(C. spicata and C. latifolia; Table 3b), and
when NBS profiling was employed the values
ranged between 0.399 (C. spicata and C. rapun-
culoides) and 0.291 (C. trachelium and C. bar-
bata; Table 3c). Looking at the populations, the
highest similarity values were obtained for all
the molecular markers in C. rapunculoides

(NBS + myb = 0.578, myb = 0.618 and NBS =
0.596) while the lowest were found in C. latifo-
lia (NBS + myb = 0.334, myb=0.294 and
NBS=0.279).
To compare the two molecular data sets

(myb and NBS profiling), the Mantel test was
performed. By means of a permutation proce-
dure, the correlation between the two Nei and
Li similarity matrices was tested against mul-
tiple randomizations of one of them. Results
showed that the data were statistically corre-
lated (g = 27.204, critical value = 1.645 for P =
0.05, r = 0.804). Consequently, to improve our
understanding of these new molecular mark-
ers, NBS and myb profiling were evaluated
both joined and as single data sets.
Cluster analysis with bootstrapping was

applied to analyze the genetic relationships
among the 67 genotypes by means of NBS and
myb profiling combined data sets (Figure 2).
The NJ tree derived from the joined data sets
divided the samples into three distinct major
groups. All populations of C. spicata, C. latifo-
lia, and C. barbata were clearly grouped into
the same branch (Group 1) and separated
according to a high bootstrap value (100%)
from the second cluster comprised of the C.
trachelium populations Trach1 and Trach2
(Group 2). Group 3, comprised of the C. rapun-
culoides genotypes, formed a cluster distinct
from the other groups with very high bootstrap
support (96%). The tree also revealed a clear
separation among populations within species,
in accordance with their geographical prove-
nance, except for C. spicata in where Spic1 is
scattered into two subgroups. Small differ-
ences in the clustering results, based on the
myb and NBS data analyzed separately, were
noted (trees not shown). Cluster analysis per-
formed on the single myb gene profiling (data
not shown) confirmed a C. trachelium cluster
(Group 2); however, within the C. rapuncu-
loides species genetic variability as high as in
the NJ tree based on the combined markers
(Group 3) were not revealed. The myb data set
also showed a strong separation (100%) of
Barb and Lat2 from Group 1. In the dendro-
gram obtained from the NBS data (data not
shown), Rap1, Rap2 and Rap3 populations
were intermingled, yet clustered apart from
Rap4, as shown in the combined tree.
Whereas, in the same dendrogram, Spic3 and
Trach1 were grouped, based on high bootstrap
values (96% and 99%, respectively), into the
main cluster containing all samples derived
from C. spicata, C. barbata, C. latifolia and C.
trachelium.
To attribute the genetic variation distribu-

tion, a hierarchical AMOVA (Table 4) was per-
formed on three sets: (a) myb, and (b) NBS
patterns alone, and (c) combined myb-NBS
profiling. The joined data set results showed
highly significant differences (P= 0.001, deter-
mined from a 1,000 replication bootstrap)

Article

Figure 2. Consensus tree between Campanula populations and species for the
presence/absence of the joined myb and NBS markers. Numbers at the internodes indi-
cate bootstrap values from 1,000 re-sampling cycles.

Group 1

Group 2

Group 3
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among the five species (45.19%), among popu-
lations within species (32.54%) and within
populations (22.27%). Looking at the single
molecular marker technique, by means of myb
profiling 26.55% of the total variation was
attributed to differences among species,
32.11% among populations within species and
the major part of variation (41.34%) was attrib-

uted to variability within populations. By
means of the three NBS primer-enzyme combi-
nations, the 52.66% of variation was attributed
to differences among species, 29.28 % among
populations within species and 16.06 % within
populations. 
To give a more comprehensive representa-

tion of the intra-specific relationships among

the populations, we performed a PCoA on myb
and NBS profiling in C. rapunculoides and C.
spicata, the two species represented by more
than two populations (Figures 3 and 4). PCoA
yielded groupings similar to the ones obtained
with cluster analysis. The first three principal
co-ordinates accounted for 39.00% of the vari-
ation in C. rapunculoides and 44.35% in C. spi-
cata, and differentiated the populations
according to their geographical distribution.
AMOVA analysis showed (Table 5) that the
genetic diversity was equally attributable to
differences among and within populations
(49.90% and 50.10% in C. rapunculoides;
50.53% and 49.47% in C. spicata).

Structure comparison
To investigate patterns of genetic structure,

we completed a Bayesian cluster analysis
using the program STRUCTURE 2.2.3. By
mean of the modal value of ΔK, in agreement
with Evanno,41 the number of groups was
detected at K = 9.
Figure 5 displays the assignment probabili-

ties of individuals in the nine inferred genetic
clusters. The four populations of C. rapuncu-
loides formed one structure group, Trach1 and
Trach2 formed a second group, and the popula-
tion of C. barbata formed a third. The popula-
tions of C. latifolia (Lat1 and Lat2) were
assigned to two different structure groups.
Within C. spicata, Spic2 and Spic3 populations,
together with the 66% of Spic1, formed anoth-
er group. In the Spic1 population, variable lev-
els of admixture from an unknown population
were observed, showing the possible presence
of hybridization.

Article

Table 4. Analysis of molecular variance among and within the five species and 12 populations of Campanula based on myb and NBS
combined profiles (a) and NBS (b) and myb (c) alone. Levels of significance were based on 1000 interation steps (SS, sums of squares;
MS, means squares; %, proportion of genetic variability; P-value, level of significance).

a
Level of variation d.f. SS MS % P

Among species 4 1591.0 397.7 45.19 0.001
Among populations within species 7 711.4 209.3 32.54 0.001
Within populations 55 620.7 21.5 22.27 0.001

b
Level of variation d.f. SS MS % P

Among species 4 917.7 229.4 26.55 0.001
Among populations within species 7 619.0 88.4 32.11 0.001
Within populations 55 925.1 16.8 41.34 0.001

c
Level of variation d.f. SS MS % P

Among species 4 877.6 219.4 52.66 0.001
Among populations within species 7 319.7 45.6 29.28 0.001
Within populations 55 254.0 4.6 16.06 0.001

Figure 3. Principal Co-
ordinate Analysis  ordina-
tion of first, second, and
third principal compo-
nents of genetic similarity
among C. rapunculoides
accessions based on myb
and NBS profiling data.

Figure 4. Principal Co-
ordinate Analysis plot
based on myb and NBS
markers among three pop-
ulations of C. spicata. 
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Discussion

The globalization of the floriculture industry
is contributing to the genetic erosion process
because the rapid adoption of few modern
flower cultivars worldwide is rapidly replacing
many traditional cultivars causing their disap-
pearance.42 Most ornamental plant breeding
programs are focusing primarily on flower
esthetic qualities and plant architecture,
resulting in an inadvertent narrowing of the
genetic base of many modern cultivars. With
the purpose of creating an efficient gene bank
to safely store a vast number of plant genera
and species, the USDA Herbaceous
Ornamental Crop Germplasm Committee com-
posed a list of priority genera of herbaceous
ornamentals. The genus Campanula was
included in the 15 most important genera for
the development of the germplasm acquisition
center.43

In contrast to the expectation that endemic
plant species are genetically depauperate, it
has been demonstrated that many endemic

species maintain high levels of genetic vari-
ability compared to their widespread con-
geners.44 In view of the preservation and
exploitation in floriculture of new Campanula
species with interesting ornamental values,31

the evaluation of the genetic diversity within
the genus appeared necessary. In the present
study, NBS and myb profiling were used for the
first time for measuring genetic variation in
five Campanula species (C. barbata, C. latifo-
lia, C. rapunculoides, C. spicata and C. trache-
lium), widespread in all the West Italian Alps.45

This research represents the first genetic
investigation on these species and popula-
tions. The results can provide important infor-
mation from both an ecological and a horticul-
tural point of view. 
To date, myb patterns have not been used for

evaluating genetic diversity in other species
while the NBS technique has been previously
applied in durum wheat by Mantovani et al.,26

in which it could discriminate closely related
genotypes within a species. Overall, myb profil-
ing with one enzyme – primer combination as
well as NBS profiling with three different com-

binations effectively distinguished Campanula
genotypes. The three primer – enzyme combi-
nations showed differences in their discrimi-
nating capacity in relation to the species.
When myb and NBS patterns were com-

bined, Campanula species were well differen-
tiated. The average similarity (Nei and Li coef-
ficient) across all paired comparisons between
plants revealed high genetic distance both
between and within species. Supported by
AMOVA, the clustering (based on combined
markers) efficiently grouped the populations
of the same species according to their geo-
graphical locations. Results were similar for
Hypericum nummularium L. populations in
the Alps, which were not true in the Pyrenees,46

or in C. pseudostenocodon in central-southern
Apennines.19 Also, in Eryngium alpestris
Schultes populations, no significant correla-
tion was found at a geographical distance of
250 km,47 while in a study on Rumex nivalis
Hegetschw, a correlation was found only in a
large region of Switzerland.48

Results from cluster analysis of single data
sets were less related to geographical distribu-
tion. In fact, we found that the mybmarker was
more adept at differentiating species while
NBS markers were best for discriminating pop-
ulations. In fact, NBS-LRR genes are responsi-
ble for the hypersensitive defence response49

demonstrated in Lolium perenne L. in which
several candida R-genes are co-located in chro-
mosomal regions. This organization could be
lead to gene rearrangement processes in
accordance with new species specificity relat-
ed to new pathogens.
PCoA was applied on C. rapunculoides and

C. spicata samples to highlight the variation
within species. In all two species, we found
that genetic connectivity among populations
decreases with increasing spatial distance: a
result of natural fragmentation. Indeed, as
revealed in Campanula thyrsoides L.,
Epilobium fleischeri Hochst., and Geum rep-
tans L. by Kuss et al.,50 the plots showed that
populations grouped without overlap agreed
with their geographical location as supported
by AMOVA. The PCoA plot of C. rapunculoides
genotypes clearly demarcated the differences
between the four populations. In particular, the
first axis separated the populations into a
Maritime Alps group (Rap1, Rap2, Rap3),
mainly characterized by grassland a maximum
altitude of 980 m, and a Cozie Alps group
(Rap4), located in a scrub area at an altitude of
1,818 m. The two regions were approximately
100 km apart. Axis 2 differentiated populations
within the Maritime Alps group and also high-
lighted genetic dissimilarities among popula-
tions located in nearby areas. Similarly, the
plot of C. spicata genotypes showed that the
genetic variability was closely related to the
habitat and geographical distances. Axis 1 dif-
ferentiated populations of different valleys
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Table 5. Analysis of molecular variance performed on the populations of C. rapuncu-
loides and C. spicata.

Level of variation d.f. SS MS % P

C. rapunculoides
Among populations 3 212.1 70.7 49.90 0.001
Within populations 18 197.8 10.9 50.10 0.001

C. spicata
Among populations 2 212.5 106.2 50.53 0.001
Within populations 15 223.6 14.9 49.47 0.001

Figure 5. Estimated genetic structure for K = 9 obtained with STRUCTURE program
from myb and NBS data sets. Each individual is represented by a vertical bar, which is
partitioned into different colored segments that represent the individual’s estimated mem-
bership fractions in nine clusters.
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while axes 2 and 3 individualized populations
collected in the same valley at different loca-
tions. Such high variability suggests that
genetic connectivity between populations has
a strong stochastic component at all spatial
scales and that the populations are not in gene
flow/drift equilibrium.51

By means of STRUCTURE software, a K
value of 9 was obtained. Concerning C. rapun-
culoides, C. trachelium and C. barbata popula-
tions, all individuals of each species were
assigned to the correct taxonomical group. In
C. latifolia, Lat1 and Lat2 were allocated to two
different groups (Figure 5) based on a low Nei
and Li similarity value (0.334) while in C. spi-
cata, the 34% of Spic1 genotypes were
assigned to a completely different group.
Taking into consideration that C. latifolia and
C. spicata plants were sampled in a narrow
area, the observed structure could be the result
of fragmentation. This result confirms that the
altitude associated with natural boundaries is
an obstacle to gene flow, indicating that the
genetic structure of plant populations reflects
the interactions of various long-term evolu-
tionary processes, such as shifts in distribu-
tion, habitat fragmentation, population isola-
tion, mutation, genetic drift, mating system,
gene flow, and selection.52-54

NBS and myb profiling showed themselves
to be new and efficient techniques for studying
molecular patterns of the Campanula genus,
previously poorly investigated. The use of neu-
tral markers could provide the means for a
more thorough understanding of the processes
that have conditioned the observed genetic
structure. Because of the small size of avail-
able populations, conclusions about the
Campanula species and population genetic
diversity could be an useful basis from which
to develop more a comprehensive work in the
future.

Conclusion

In conclusion, our results highlighted that
the genetic variability at myb and R-gene rich
regions can be useful to assess the overall
genetic diversity of plants on par with micro-
satellites and AFLPs26.
The high levels of genetic variability detect-

ed within and among Campanula species of
the North West Alps indicate that natural frag-
mentation has led to a significant decline in
relatedness between population pairs with
increasing geographical distance, indicating
the lack of a genetic bottleneck.55,56 The conser-
vation of variability could be crucial for the
continuous evolution of the species and their
exploitation.
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