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Abstract

We present results of basal friction coefficient inversion. The inver-
sion was performed by a 2D flow line model for one of the four fast flow-
ing ice streams on the southern side of the Academy of Sciences Ice
Cap in the Komsomolets Island, Severnaya Zemlya archipelago. The
input data for the performance of both the forward and the inverse
problems included synthetic aperture radar interferometry ice surface
velocities, ice surface elevations and ice thicknesses obtained by air-
borne measurements (all were taken from Dowdeswell et al., 2002).
Numerical experiments with: i) different sea level shifts; and ii) ran-
domly perturbed friction coefficient have been carried out in the for-
ward problem. The impact of sea level changes on vertical distribution
of horizontal velocity and on shear stress distribution near the ice front
has been investigated in experiments with different sea level shifts.
The experiments with randomly perturbed friction coefficient have
revealed that the modeled surface velocity is weakly sensitive to the
perturbations and, therefore, the inverse problem should be considered
ill posed. To mitigate ill posedness of the inverse problem, Tikhonov’s
regularization was applied. The regularization parameter was deter-
mined from the relation of the discrepancy between observed and mod-
eled velocities to the regularization parameter. The inversion was per-
formed for both linear and non-linear sliding laws. The inverted spatial
distributions of the basal friction coefficient are similar for both slid-
ing laws. The similarity between these inverted distributions suggests
that the changes in the friction coefficient are accompanied by appro-
priate water content variations at the glacier base.

Introduction 

Observations based on digital Landsat imagery and on satellite syn-
thetic aperture radar interferometry (InSAR) have revealed four
drainage basins and four fast flowing ice streams respectively on the
southern side of the Academy of Sciences Ice Cap, on the Komsomolets
Island in Severnaya Zemlya archipelago (Figure 1).1 The four ice
streams are between 17 and 37 km long and 4-8 km wide.1 Bedrock ele-
vations of these areas are below sea level, and ice flow velocities reach
values of 70-100 m/a (Figure 2). Such fast flow line features are typical
for outlet glaciers and ice streams in both the Arctic and the Antarctic.
These ice streams are the major locations of iceberg calving from the
Academy of Sciences Ice Cap.1

The centerline geometry of one of the ice streams on the southern
side of the Academy of Sciences Ice Cap is shown in Figure 3. Ice flow
of this ice stream was simulated with a 2D flow line finite-difference
model.2,3 The model describes an ice flow along a flow line.2-4 The
results of the modeling obtained for the C-C’ flow line profile data
(Figure 3) have shown that the ice surface velocity along the flow line
reaches values of 100 m/a, assuming that ice experiences sliding.
However, observed surface velocity distribution along C-C’ flow line
profile1 could not be matched by the model experiments for constant
values of friction coefficient and for both linear and non-linear friction
laws. Absence of the good agreement between observed and modeled
surface velocities suggests that the friction coefficient should be a spa-
tially variable parameter. Therefore, to achieve a better agreement
between observed and simulated velocities, the spatial distribution of
the friction coefficients has to be optimized and an inverse problem
needs to be solved.5-11

In this manuscript, the inverse problem for basal friction coefficient
distribution is considered and the results have been obtained for the C-
C’ flow line profile (Figure 3).

Inversion for friction coefficients is based on minimization of the
deviation between observed and modeled surface velocities. A series of
test experiments, in which modeled surface velocities are used as
observations in the inverse problem, have shown that the inverse prob-
lem for the full 2D ice flow line model is ill posed. More precisely, sur-
face velocity is weakly sensitive to small perturbations in friction coef-
ficients and, therefore, the perturbations appear in the inverted fric-
tion coefficients. 

We present a solution to the ill-posed inversion problem based on the
Tikhonov’s regularization method, where Tikhonov’s stabilizing func-
tional was added to the main discrepancy functional.12 The regulariza-
tion parameter was defined from the discrepancy versus regularization
parameter relations. 
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Field equations

Forward problem 

Basic equations
The 2D flow line model used as a forward model in this study is sim-

ilar to that developed by Pattyn2,3

(1)

where (x,z) is a rectangular coordinate system with the x axis along
the flow line and the z axis pointing vertically upward; u, w are horizon-
tal and vertical ice flow velocities, respectively; σik, σ’ik are stress ten-
sor and stress deviator, respectively; e·

ik is strain-rate tensor; �e· is sec-
ond invariant of the strain-rate tensor; h is ice effective viscosity; A(T)
is flow-law rate factor; T is ice temperature; hb(x), hs(x) are ice bed and
ice surface elevations, respectively; L is the glacier length.

The continuity equation is rewritten in the integral form by integrat-

Article

Figure 1 (after Dowdeswell et al.1). Map of Severnaya Zemlya
showing the Academy of Sciences Ice Cap on Komsomolets Island
together with the other ice caps in the archipelago: Rusanov Ice
Cap, Vavilov Ice Cap, Karpinsky Ice Cap, University Ice Cap,
Pioneer Glacier, Semenov-Tyan Shansky Glacier, Kropotkin
Glacier, Leningrad Glacier. Inset is the location of Severnaya
Zemlya and the nearby Russian Arctic archipelagos of Franz Josef
Land and Novaya Zemlya within the Eurasian High Arctic.

Figure 2 (after Dowdeswell et al.1). Corrected interferometrically
derived ice surface velocities for the Academy of Sciences Ice Cap.
The first two contours are at velocities of 5 and 10 m a-1, with
subsequent contours at 10 m a-1 intervals. Unshaded areas of the
ice cap are regions of non-corrected velocity data. Dotted areas
are bare land. The four fast flowing ice streams central lines are
denoted as A-A', B-B', C-C', D-D' respectively. Velocity profiles
A-A' to D-D' are shown in Figure 11 of Dowdeswell et al. In this
manuscript the basal friction coefficient inversion for C-C' flow
line has been obtained.

Figure 3. (A) The C-C’ flow line profile, which crosses down-
stream one of the four fast flowing ice streams in the Academy of
Sciences Ice Cap (Figure 2). The data of ice surface and ice bed
elevations were imported from Figure 8 of Dowdeswell et al.1 (B)
The ice shelf with trapezoidal geometry, which is considered as an
extension of the C-C’ profile.
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ing the differential continuity equation2,3 from hb to a current value of
z. By combining the integral continuity equation with approximations
of the boundary conditions at the ice front described below, the numer-
ical solution stability of Eq. (1) is achieved. 

The flow-law rate factor A(T) was taken from Paterson.13 The
description of constants and variables in the equations is provided in
the Appendix. 

Boundary conditions
The ice surface at z=hs is stress free. At the ice bottom (z=hb) ice is

assumed to be sliding. Both linear and non-linear friction laws2,14-18

were considered. The general form of the friction law14,18 is expressed
as: 

(2)

where Kfr is friction coefficient, m is the exponent in the friction law,
m=1 gives linear friction law and m>1 corresponds to non-linear fric-

tion law; is the base ice flow velocity; and are tangential and
normal to the bed vectors, respectively.

In accordance with basic equations of the model, the boundary con-
ditions on the ice surface, at the glacier base (friction law) and at the
ice shelf base can be rewritten in terms of stress deviator components.

The boundary conditions on the ice surface and at the ice shelf base
can be written as

(3)

where 

The friction law (2) can be rewritten as 

(4)

The inversion of friction coefficient for the non-linear Weertman-
type friction law, which takes into account the basal slopes, was also
performed for the C-C’ profile. By considering two different sliding laws
the effects of friction law formulation on the results of the inversion
procedure were investigated.

The boundary conditions at the glacier terminus is normal stress
exerted by sea water

(5)

where

and rw is the sea water density.

Numerical solution and approximations of the bound-
ary conditions 

The problem is solved numerically using the finite-difference

method.2-4,19-23 The model considered so-called stretched coordinates,
where vertical coordinate ξ=(hs-z)/H and is 0<ξ<1. 

To provide stability of the numerical solution, the boundary condi-
tions have been included in the momentum equations [second equa-
tion from (1)].24,25 In particular, at the ice front boundary the combined
momentum equation has the following form (in x, ξ variables):

, where , ,

and accounting for the boundary condition it becomes 

,

and follows from (5).
Thus, taking into account the boundary conditions (5), the finite dif-

ferencing in horizontal direction leads to the equation at x=L:

(6)

Boundary condition at ice surface is written as 

(7)

where index 1 indicates that corresponding terms are approximated in
grid nodes located at ice surface and index 2 corresponds to next sub-
ice-surface grid layer. 

The continuity equation from Eq. (1) completes the full system of the
boundary conditions at free surface and at the glacier terminus.

The boundary condition at the ice shelf base has the following form:

(8)

where index Nξ corresponds to grid layer located at the ice shelf base.
The second equation, which completes the system of the boundary con-
ditions at the ice shelf base, is wb=0 [or in the general case wb=w(t)].
This form of the second equation allows us to consider vertical deflec-
tions of the ice shelf.

Inverse problem
Inversion for the friction coefficient has been implemented using

the gradient minimization procedure for the smoothed functional:12

Article
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(8)

where uobs are observed velocities along the flow line and umod are mod-
eled velocities; Φ denotes the first integral and Ω is the stabilizer,12 b

is the regularization parameter; and q(x) was considered equal to 1.
The non-zero value of b implies that the inverse problem, i.e. the prob-
lem, which is based on the minimization of the discrepancy Φ, is ill
posed and the original problem of the discrepancy minimization is
replaced with the problem of the smoothed functional (9) minimiza-
tion. The minimization has been performed using the gradient mini-
mization procedure,26 which is written as an iterative sequence of the
friction coefficient values in the grid nodes:

(10)

where (Kfr)m
i are the friction coefficient values in the grid nodes at the

m the step of the iterative sequence; ym
i is the parameter of the gradi-

ent minimization procedure.
The gradient of Φ, which is a part of the gradient in Eq. (10), is

defined as 

(11)

where 

is the derivative calculated numerically using the forward model that
runs for the two friction coefficient distributions

(i) (Kfr)1 .., (Kfr)i +D(Kfr)i,..(Kfr)Nx  and  (ii) (Kfr)1 .., (Kfr)i -D(Kfr)i,..(Kfr)Nx .

Numerical experiments

Forward problem
The numerical experiment performed with randomly perturbed fric-

tion coefficient (Figure 4A) has shown that the sensitivity of the hori-
zontal surface velocity to the amplitude of the random perturbations is
relatively low (Figure 4B). 

The initial friction coefficient distribution was taken in the form of
a smoothed step function (Figure 4A). The random perturbations of the
friction coefficient at x>L/2 (the random perturbations of the lower
level of the friction coefficient value) show insignificant ice surface
velocity changes (Figure 4C). The dependence, which is the surface
velocity deviation versus the amplitude of the perturbations (Figure
4C), proves that 10% uncertainty in the surface velocity makes all per-
turbed friction coefficient distributions equivalent. This uncertainty
can be found in observed data or, in particular, can result from the
approximate ice temperature distribution assigned in the model. In
other words, if the uncertainty in the horizontal surface velocities is
approximately 10%, we cannot choose any friction coefficient distribu-
tion from a bulk of the randomly perturbed coefficients (Figure 4A).

The next experiment, which was performed with various ice shelf

Article

Figure 4. (A) The friction coefficient distributions along the flow
line. 1 – initial friction coefficient distribution. 2-4 - randomly
perturbed friction coefficient distributions with different ampli-
tudes of the perturbations ΔKfr. 2 - ΔKfr=102 Pa m–1a. 3 -
ΔKfr=3·102 Pa m–1a. 4 - ΔKfr=5·102 Pa m–1a. (B) The ice surface
horizontal velocity distributions that correspond to the friction
coefficient distributions, are represented in Figure 4A. (C) The
discrepancy between ice surface horizontal velocity distributions
obtained for the initial friction coefficient distribution (curve 1 in
Figure 4A) and randomly perturbed friction coefficient distribu-
tion. The perturbations were applied to the lower level of the step
function, which defines the initial friction coefficient distribu-
tion. The figure exemplifies that, generally, the ice surface veloci-
ty deviation doesn’t increase despite the enhancement of the devi-
ation in friction coefficient distributions - the deviation is defined
as maz 0<z<L˙Kfr1(x)–Kfr2(x)˙.
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lengths, shows that the modeled surface velocity distribution remains
practically unchanged if the ice front is removed to the coastal ice mar-
gin (Figure 3A). The relative deviation in the modeled surface veloci-
ties that have been obtained both with (Figure 3B) and without (Figure
3A) the ice shelf, respectively, is approximately 6%, depending on the
grid size. This result is interesting from a computational point of view.
The inverse problem requires 2NxGl runs of the forward problem at each
step of the gradient minimization procedure (2NxGl is the number of
horizontal grid nodes in the glacier vertical cross-section) (Figure 3A).

A third experiment performed with different sea level shifts shows
that horizontal ice flow velocity is sensitive to sea level changes
(Figure 5); glacier terminus position corresponds to the coastal ice
margin. Depth averaged horizontal velocity and horizontal velocity pro-
file at the glacier terminus (ice sheet front) are both sensitive to sea
level changes (Figure 5). The 10-m sea level shift leads to an approxi-
mate 30% increase in the depth-averaged velocity at the terminus. The
horizontal velocity maximum at the terminus is located at the sea level
and this maximum is reinforced when the sea level drops (Figure 5). 

The simulated vertical distribution of the horizontal velocity can be
used to calculate stresses near the terminus. The 10-m sea level
changes are accompanied by an approximate doubling of the shear
stress (Figure 6). The results imply that the periodically (diurnally)
shear stress changes can lead to ice breaking and to the calving of
small debris at the ice front. Indeed, the zone of drastic stress changes
can be considered as the zone of crevasses. The known calving models
are based on the ice surface crevasses propagation.27 Additionally, an
increase in the longitudinal stresses due to a drop in sea level should
decrease the threshold value of shear stress for the appearance of cre-
vasses. Thus, the extent of the crevasse zone (from the terminus
inward to the glacier) could be estimated from the extent of the zone
where stresses experience large variations due to changes in sea level.
In particular, this is approximately 10-15 m for �l=10 m in the model
and, thus, the maximum width of ice debris can be assessed to be
approximately 10 m. 

It should be noted that, usually, diurnal sea level changes are much
less than 10 m28 and the main mechanisms that trigger ice calving are
associated with the impact of the ocean swells on the ice front29 and on
seismic ice quake.30 Nevertheless, there are regions on the Earth
where diurnal changes in water level can reach approximately 10 m.
For example, an approximate 15 m change in diurnal water level is
observed in the lake which washes the terminus of Glacier Perito
Moreno in Patagonia.31 The borehole measurements at the Glacier
Perito Moreno have shown that the water levels in the boreholes were
oscillating in a diurnal manner within a range of ±15 m.31

Inverse problem
Inversion for friction coefficient has been tested with artificial

observed surface velocities. The spatial distribution of the observed sur-
face velocity has been obtained for a given friction coefficient distribu-
tion. The inversions were performed using a smoothed step function as
a given spatial distribution of friction coefficients (Figure 7). The dis-
crepancy � depends on the regularization parameter (Figure 8).

To account for the dependence of the ice viscosity on temperature, it
is assumed that the vertical temperature distribution is linear. In addi-
tion, it is assumed that the ice temperature linearly increases from -
15°C at the surface to -5°C at the ice base at the divide, and increases
from -2°C to -1°C at the margin. The reconstructed friction coefficients
gradually decrease from approximately 3.5·103 Pa a m-1 to a mean value
of 5·102 Pa a m-1 achieved around 25<x<40 km (Figure 9A). The mis-
match between simulated and observed surface velocities is relatively
small (Figure 9B).

Article

Figure 6. Shear stress (absolute values) distributions in the ice
front vicinity obtained for different sea level shifts: A) Δl=0; B)
Δl=5 m; C) Δl=10 m.

Figure 5. Horizontal velocity profiles at the ice front obtained for
different sea level shifts (Δl). Δl=0 corresponds to floating ice, i.e.
-hbrw =(hs-hb)r where ρw is sea water density.
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Discussion

Numerical experiments with the randomly perturbed friction coeffi-
cient have revealed that the horizontal surface velocity is weakly sensi-
tive to the perturbations and, thus, the perturbations appear on the x-
distribution of the inverted friction coefficient. Therefore, the inverse
problem should be considered as ill posed because the weak sensitivi-
ty of the surface velocity to the perturbations in the friction coefficient
signifies inverse problem instability. Otherwise, the instability in the

inverse problem means that small deviations in observed surface veloc-
ities allow sufficient perturbations in the friction coefficient. Hence,
the application of the regularization method is substantiated. 

Tikhonov’s stabilizing functional method reduces the effects of per-
turbations proportionally to the regularization parameter b. Further
increase in the parameter leads to a reduction in the real spatial vari-
ability of the friction coefficients. 

The reduction in the existent friction coefficient variability is
accompanied by a growing discrepancy between observed and modeled
surface velocities (Figure 8). Thus, the regularization parameter is

Article

Figure 7. Friction coefficient distributions obtained in the test
inverse problem, in which the modeled surface velocities obtained
in the forward problem are used in Eq. (9) instead of observed
surface velocities. 1 – initial friction coefficient distribution was
taken in the form of the smoothed step function, which gradually
drops from a maximum value K1 to a minimum value K2. 2-4 –
reconstructed friction coefficient distributions: 2 – β=2·10–7, 3 -
β=10–4, 4 - β=8·10–4. The inversions shown in figures (A) and (B)
differ in the initial friction coefficient distributions. 

Figure 8. Discrepancy functional values versus regularization
parameter in the test inverse problems. Figure (A) corresponds to
the friction coefficient distributions represented in Figure 7A and
figure (B) corresponds to the friction coefficient distributions
represented in Figure 7B.
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chosen as the value at which non-existent perturbations have been
reduced but the real variability of friction coefficient is not fully
smoothed. The optimal value of the regularization parameter can be
defined approximately in the curve which is the deviation between
observed and modeled surface velocities versus the regularization
parameter (Figure 8). This method of selecting the optimal regulariza-
tion parameter was theoretically validated in Leonov.32

Evidently, application of Tikhonov’s regularization method narrows a
range of possible inverted x-distributions of the friction coefficients.
Thus, it is supposed a priori that real x-distribution of friction coeffi-
cient is a smooth function. Furthermore, the friction coefficients in the
friction laws are constants.2,15-17 Hence, the friction coefficient inver-

sion performed for the C-C’ cross-section (Figure 9A) can be interpret-
ed as follows: a large value of the friction coefficient at 0<x<20 km
apparently means that ice is frozen to the bed at this distance from the
summit. Then, it seems the basal temperature can reach the melt point
at 25<x<40 km due to an increase in both deformational heating and
ice surface temperature and, thus, the basal sliding appears at x>25
km. Otherwise, the water presence in the basal layer can be explained
by the low bed elevations in the areas of fast flowing ice streams. The
water presence in the basal layer provides the basal sliding which will
in due time increase basal temperature from the basal friction in the
appropriate areas of ice base. 

General formulations of the friction laws suppose that the appropri-

Article

Figure 9. (A) The friction coefficient distribution obtained in the
inverse problem for the linear friction law and for the observed
surface velocity distribution along the C-C' flow line. The
observed surface velocity distribution was taken from Figure 11 of
Dowdeswell et al.1 (B) The ice surface horizontal velocity distri-
butions along the flow line: 1 – the observed surface velocity dis-
tribution,1 2 - the modeled surface velocity distribution, which
corresponds to the reconstructed friction coefficient in Figure 9A.

Figure 10. (A) The friction coefficient distribution obtained in
the inverse problem for the non-linear Weertman type friction law
and for the observed surface velocity distribution along the C-C'
flow line (Figure 11 of Dowdeswell et al.1). (B) The ice surface
horizontal velocity distributions along the flow line: 1 – the
observed surface velocity distribution,1 2 - the modeled surface
velocity distribution, which corresponds to the reconstructed fric-
tion coefficient in Figure 10A.
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ate equations include the basal pressure.2 Introduction of the hydro-
static pressure into Eq. (2) does not provide a constant value of the
inverted friction coefficient at x>25 km. The inversion performed for
the non-linear Weertman-type friction law reveals similar variations in
the inverted friction coefficient at x>25 km (Figure 10). The similar
variability in the inverted friction coefficients obtained for both the lin-
ear (Figure 9A) and the non-linear (Figure 10A) friction laws implies
that physical properties of the basal layer change according to the fric-
tion coefficient distribution along the flow line. In particular, the water
content in the basal layer can vary in agreement with the bed elevation
changes and enhancement of water content at lower elevations pro-
vides a decrease in the friction coefficient in corresponding areas. 

Finally, the two areas can be distinguished in the ice base, where
basal ice is frozen to the bed (0<x<20 km) and where there is basal
sliding (25<x<40 km). The boundary of transition from the area of the
frozen basal ice to the area of the basal sliding is diluted due to smooth-
ing of the inverted friction coefficient by the stabilizer. The linear fric-
tion law provides good agreement between observed and modeled sur-
face velocity distributions along the flow line. 
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