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Appendix

To estimate the temporal variation in μ, we used the same statistical approach as in

IW2008. In this method, the temporal variation was represented by a piecewise linear

function or linear spline19, and the breaking points of the piecewise linear function were

taken at all occurrence times ti (i = 1, 2, . . . , N) of the N earthquakes in an examined

sequence. Hence, the temporal variation in μ was represented by

μ(t) =
μi+1 − μi

ti+1 − ti
(t − ti) + μi for ti ≤ t < ti+1. (A1)

We then incorporated a smoothness constraint or roughness penalty on μ(t). We intended

to optimize θ = (μ1, μ2, . . . , μN) (and β and σ), but practically optimization of such a huge

number of parameters is an unstable process; the incorporation of the constraint enhances

the stability of the optimization.

The likelihood function of the parameters was obtained using Equation 5 and is as follows:

L(β, σ, θ) =
N∏

i=1

f(Mi|β, μi, σ). (A2)

This formula agrees with Equation 6 if all values of μi’s are the same. The smoothness

constraint was quantified by the following function:

Φ(θ|v) = v
∫ T

0

[
∂

∂t
μ(t)

]2

dt, (A3)

which can be rewritten as

Φ(θ|v) = v
N−1∑
i=1

(μi+1 − μi)
2

ti+1 − ti
(A4)

by substituting Equation A1 into Equation A3.

Let us now consider the penalized log-likelihood function22,23 Q(θ|v, β, σ) as follows:

Q(θ|v, β, σ) = ln L(β, σ, θ) − Φ(θ|v). (A5)

The maximization of Q(θ|v, β, σ)) provides the best estimate of θ; however, the result

depends on the value of v, which controls the trade-off between the goodness-of-fit of the

model to the data and the smoothness, and the values of β and σ.
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A Bayesian approach enables us to objectively determine the values of v, β, and σ by

means of the type II maximum likelihood approach24 or the maximization of the marginal

likelihood20. We supposed that the assumed probability density function (i.e. prior distri-

bution) of θ is proportional to exp[−Φ(θ|v)], and hence, the prior distribution π(θ|v) was

given by

π(θ|v) =
N−1∏
i=1

√
v

π(ti+1 − ti)
exp

[
−v(μi+1 − μi)

2

(ti+1 − ti)

]
. (A6)

Then, if we integrate out the product of the likelihood function L(β, σ, θ) that appears in

Equation A2 and the prior distribution π(θ|v) over θ, we can obtain the marginal likelihood25

with respect to v, β, and σ.

The integration described above, however, is impractical because the integration of π(θ|v)

over θ is not finite; π(θ|v) with respect to θ is the so-called improper prior. Instead, we

isolated μN from θ because the integration of the prior over θ−N = (μ1, μ2, . . . , μN−1) is

finite. Thus, we integrated out the product over θ−N , and the marginal likelihood L with

respect to v, β, σ, and μN was obtained as follows:

L(v, β, σ, μN) =
∫
Θ

L(β, σ, θ)π−N (θ−N |v, μN)dθ−N , (A7)

where Θ denotes the parameter space of θ−N , and the prior distribution in Equation A6

is rewritten here as π−N(θ−N |v, μN). The set of values of v, β, σ, and μN that maximizes

the marginal likelihood are the best estimates20,24. In this Bayesian framework, the four

parameters are often referred to as hyperparameters.

The optimization was carried out through the repetition of the following two steps. In the

first step, for a particular set of values of the four hyperparameters, we searched the value

of θ−N that maximizes the penalized log-likelihood function Q(θ|v, β, σ) in Equation A5.

In the second step, we computed the value of the logarithm of the marginal likelihood

lnL(v, β, σ, μN). For this computation, the logarithm of the integrand in Equation A7

ln L(β, σ, θ)π−N(θ−N |v, μN) was approximated by a quadratic form at the optimum of θ−N

found in the first step. Then, the Laplace approximation26 was used for the integration in
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Equation A7. We changed the values of the four hyperparameters, and repeated these two

steps until the value of lnL(v, β, σ, μN) was maximized.

For the model comparison, we introduced the Akaike Bayesian Information Criterion

(ABIC)20:

ABIC = −2(maximum ln L)

+2(the number of optimized hyperparameters). (A8)

In the case where the temporal variation in μ is allowed, the number of optimized hyperpa-

rameters is four.

The value of v is assumed to approach infinity when we do not consider temporal variation.

In this case, the prior distribution approaches the Dirac delta function δ(θ−N), and the limit

of the marginal likelihood is

L(v, β, σ, μN) →
∫
Θ

L(β, σ, θ)δ(θ−N )dθ−N = L(β, σ, μN) as v → ∞. (A9)

Consequently, maximization of the marginal likelihood agrees with the ordinary maximum

likelihood method, and ABIC is equivalent to the Akaike Information Criterion21. A more

precise and theoretical justification of the equivalence is provided by Akaike27. In this case,

the number of the optimized (hyper)parameters is three (β, σ, and μN).
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