
[page 46] [Research in Geophysics 2012; 2:e7]

Research in Geophysics 2012; volume 2:e7

On Bayesian procedure for maximum earthquake magnitude estimation
Andrzej Kijko
Aon Benfield Natural Hazard Centre, University of Pretoria, Republic of South Africa

Abstract 

This work is focused on the Bayesian procedure for the estimation
of the regional maximum possible earthquake magnitude mmax. The
paper briefly discusses the currently used Bayesian procedure for mmax,
as developed by Cornell, and a statistically justifiable alternative
approach is suggested. The fundamental problem in the application of
the current Bayesian formalism for mmax estimation is that one of the
components of the posterior distribution is the sample likelihood func-
tion, for which the range of observations (earthquake magnitudes)
depends on the unknown parameter mmax. This dependence violates
the property of regularity of the maximum likelihood function. The
resulting likelihood function, therefore, reaches its maximum at the

maximum observed earthquake magnitude and not at the
required maximum possible magnitude mmax. Since the sample likeli-
hood function is a key component of the posterior distribution, the

posterior estimate of 𝑚̂max, is biased. The degree of the bias and its
sign depend on the applied Bayesian estimator, the quantity of infor-
mation provided by the prior distribution, and the sample likelihood
function. It has been shown that if the maximum posterior estimate is
used, the bias is negative and the resulting underestimation of mmax

can be as big as 0.5 units of magnitude. This study explores only the
maximum posterior estimate of mmax, which is conceptionally close to
the classic maximum likelihood estimation. However, conclusions

regarding the shortfall of the current Bayesian procedure are applica-
ble to all Bayesian estimators, e.g. posterior mean and posterior medi-
an. A simple, ad hoc solution of this non-regular maximum likelihood
problem is also presented. 

Introduction

Many people recall 11 March 2011, the day on which the massive 9.0
(MW) magnitude earthquake and tsunami struck the north-eastern
coast of Japan, killing more than 30,000 people. As a result, three reac-
tors at the Fukushima Daiichi nuclear facility overheated, causing
meltdowns that released large amounts of radioactive material into the
air. The enormous size of the earthquake took most people by surprise.
This earthquake, known as the Tohoku earthquake, overshadowed a
similar event that took place on 17 July 2007. On that day, an earth-
quake of magnitude MJ 6.8 hit Kashiwazaki-Kariwa, the world’s largest
nuclear power plant complex, causing radioactive leaks from two reac-
tors and a fire at Reactor No. 3. The reason given for the damage to the
plant, as indicated in a series of reports issued by a team of interna-
tional experts led by the International Atomic Energy Agency (IAEA)
was that Levels of seismic ground motion estimated in the design process
were very significantly exceeded by the event....1 Most Japanese nuclear
plants are built to withstand earthquakes of magnitude MJ=6.5, while
the earthquake of 17 July 2007 had a magnitude of 6.8. 

The nuclear safety breaches at the Fukushima Daiichi and the
Kashiwazaki-Kariwa nuclear power facilities serve as pertinent
reminders of the importance of rigorous seismic-hazard assessment of
critical-structure sites. This is especially relevant to the correct assess-
ment of the regional-characteristic, maximum possible earthquake
magnitude mmax.

In his contribution to the NP-4726 EPRI report, Cornell2 presents a
Bayesian procedure, referred to hereafter as Cornell’s Bayesian
Procedure (CBP) for the assessment of the regional-characteristic,
maximum possible earthquake magnitude mmax. The CBP was present-
ed as a possible solution in the broad context of problems associated
with the determination of mmax. But Cornell2 does not explicitly confirm
the type of his Bayesian estimator. This paper aims to provide a discus-
sion of the simplest (the maximum posterior estimate) of the CBP and
its potential shortfalls. 

The essence of the current CBP for the estimation of mmax consists
in combining the following two sources of information: 
i. prior knowledge of the distribution of the maximum possible earth-

quake magnitude mmax, π(mmax)
and 

ii. likelihood function L(m|mmax) of a random sample of earthquake
magnitudes m=(m1, m2, ..., mn).
The knowledge of a prior distribution π(mmax) comes from the

worldwide database of mmax for different seismogenic regions. Cornell2

describes in detail how the prior π(mmax) had been established. All
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seismic active regions were grouped into different categories
(domains) according to crustal type, intra- or interplate, source origin,
age, tectonic stresses, tectonic history, etc. For more details see the
studies of Coppersmith3 and Johnston.4

In this short paper, it is assumed that the prior information on mmax

is available and correct, that it was established independently on the
sample of earthquake magnitudes m=(m1,..., mn), and that it can be
expressed in terms of the probability density function π(mmax). In sta-
tistics, π(mmax) is known as a prior distribution, which describes cur-
rent knowledge about the unknown parameter (mmax), prior to taking a
random sample of observations; in this case, earthquake magnitudes
m.

The second source of information on mmax is the sample likelihood
function L(m|mmax) of n independent earthquake magnitudes mi.

(1)

where fM(m|mmax) denotes the probability density function (PDF) of the
earthquake magnitude m. Following Cornell,2 it is assumed that earth-
quake magnitudes mi are independent random values, distributed
according to the classic frequency-magnitude Gutenberg-Richter rela-
tion and bounded from the top by the maximum possible earthquake
magnitude mmax. It is assumed that all events having a magnitude
greater than or equal to mmin are recorded. Magnitude mmin is the
known level of completeness. For the Gutenberg-Richter relation, the
respective PDF and cumulative distribution function (CDF) of earth-
quake magnitude are continuous and equal to5,6: 

(2)

and

(3)

where β=bln(10), and b is the parameter of the frequency-magnitude
Gutenberg-Richter relation. 

The distribution which summarizes both the prior knowledge about
mmax and the knowledge coming from the observed magnitudes m is
known as the posterior distribution of mmax and takes the form

(4)

The posterior density distribution (4) replaces the likelihood func-
tion L(m|mmax) as an expression that incorporates all available infor-
mation on parameter mmax. There are at least three Bayesian analogs of
the maximum likelihood point estimators. The first is the maximum a
posterior estimate, known as the MAP estimate. The MAP estimate cor-
responds to the magnitude at which the posterior distribution (4)
achieves its maximum. The second Bayesian estimator is the posterior

mean, determined as the first moment (the mean value) of the poste-
rior distribution (4). The third Bayesian estimator is the posterior
median.7 This study explores only the MAP estimate of mmax which is
close to the classic maximum likelihood procedure; however, all conclu-
sions regarding the shortfall of the current CBP are by default applica-
ble to all three Bayesian estimators. Therefore, and for the following
definition of the MAP estimate, the value of mmax, which maximises the
posterior distribution fmmax(mmax|m) will be analyzed. 

Why is the current procedure for mmax evalua-
tion flawed?

The fundamental problem with the current CBP for mmax evaluation
lies in the properties of the sample likelihood function L(m|mmax). The
sample likelihood function is expected to be of such a form that the
probability to observe magnitudes m reaches its maximum when mmax

is equal to the true mmax.7 Unfortunately, the likelihood function (1)
does not fulfil this condition. If, in the construction of the likelihood
function the PDF of the Gutenberg-Richter is used, (formula 2), the
likelihood function reaches its maximum at the maximum observed

magnitude and not, as would be expected, at the maximum pos-
sible magnitude mmax. This fact is illustrated in Figure 1 where the val-

ues of mmax that are smaller than are not allowed; however, val-

ues larger than would give a smaller likelihood. 

Since by default ≤mmax the sample likelihood function (1) pro-

vides an estimate of mmax, (denoted as 𝑚̂max) which is systematically
underestimated. This fact is well known in statistics7,8 and it takes
place when the range of observations depends on an unknown param-
eter. Such dependence violates the property of regularity of the maxi-
mum likelihood function.9

When the likelihood function is non-regular, it achieves its maxi-

Article

Figure 1. Illustration of the sample likelihood function
L(m|mmax). Since the range of the observed magnitudes depends
on the unknown mmax the function reaches its maximum at the
maximum observed magnitude and not, as would be expect-
ed, at the maximum possible, mmax.
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mum at the maximum observed value, in this case MAX(m)= ; a
result that is too small. In the CERN classic textbook of statistics,10 such
an instance is referred to as an academic example of a poor maximum
likelihood estimate. A solution to this poor behavior of the sample like-
lihood function, which includes a description of the phenomenon from
point of view of theory of estimation is provided, for example, by Bain
and Engelhardt.11

Given that the sample likelihood function is part of the posterior dis-
tribution (4), the MAP estimation procedure has the same flaw: its esti-
mate of mmax is systematically underestimated. The degree of underes-
timation depends on the quantity of information provided by each of
the two components of the posterior distribution, namely the prior dis-
tribution π(mmax) and sample likelihood function L(m|mmax). The

underestimation of 𝑚̂max is minimal when the prior information is well
defined, accurate and precise, and L(m|mmax) is based on a short cata-
log with only a few weak events. In such an instance, all the informa-
tion in mmax will come from the prior distribution. However, in an
instance where the sample likelihood function contains a significant
amount of information (e.g. it is based on a long span of catalog con-
taining many events, including historic earthquakes), the posterior
distribution (4) will be dominated by L(m|mmax). Then maximum of (4)

will be between and the true mmax. Since ≤mmax this

instance in most cases will lead to the biased, underestimated value of 𝑚̂max.
Illustrations of such underestimations, obtained through Monte-

Carlo simulations, and applied for the two different prior distributions

as in Figure 2, are shown in Figures 3 and 4. The first prior distribution
is based on work by Petersen et al.12 The second prior distribution is the
classic, double truncated Gaussian PDF.3 In both instances, the sample
likelihood function is derived from a random sample of earthquake
magnitudes, generated according to the Gutenberg-Richter magnitude
distributions (2), where mmin=4.0, mmax=6.92, β=2.0, the mean activity
rate λ=10 (events/year), and time span of the catalog is equal to 100
years. It is important to note that all quantitative assessments result-
ing from the Monte-Carlo simulation depends on the difference
between mmax and mmin. The smaller the difference, the fewer the num-
ber of earthquakes needed to obtain the same effect. In the discussed
case of mmin=4.0 and mmax=6.92, the difference mmax-mmin is approxi-
mately 3. A reduction of this difference by 1 unit of magnitude leads to
a reduction in the number of earthquakes by approximately one order,
which means that the same assessment of mmax can be reached with 10
times less earthquakes if the level of completeness is mmax=5.0. 

Figure 3 shows the results of the Monte-Carlo simulations of the
mmax MAP assessment by the current CBP, when Petersen’s distribution
is used as the prior distribution. The mean value of Peterson’s mmax dis-
tribution is 6.92 (standard deviation 0.32). Results of similar simula-
tions for the Gaussian prior distribution are shown in Figure 4. The
applied Gaussian distribution is truncated from both sides; from the

left at , and from the right at the magnitude 9.5. The mean value
of the distribution (before truncation) is the same as for the Petersen’s
distribution, i.e. 6.92 (standard deviation 0.32). 

Article

Figure 2. The two prior distributions of the maximum possible
earthquake magnitude, mmax, used in this study. The first (dashed
line) illustrates the distribution of mmax for intraplate regions. The
mean value of the prior distribution is equal to 6.92 and its stan-
dard deviation is 0.32. The second applied prior distribution
(dash-dot line) is Gaussian, truncated from both sides. From the
left it is truncated at the magnitude and from the right at
magnitude 9.5. The mean value of the distribution (before trun-
cation) and its standard deviation are the same as for the distribu-
tion by Petersen et al.12

Figure 3. The mmax estimation using the current Cornell’s
Bayesian Procedure with the prior based on work by Petersen et
al.12 The maximum of the posterior distribution is between 
and true mmax. In the above example, earthquake magnitudes were
generated according to the Gutenberg-Richter magnitude distri-
butions (2), where mmin=4.0, mmax=6.92, and β=2.0. The results
depend on the assumed difference between mmax and mmin. A
reduction of this difference by 1 unit of magnitude leads to a
reduction in the number of earthquakes by approximately one
order, which means that the same effect can be reached with the
help of 10 times less earthquakes if the assumed level of complete-
ness is mmin=5.0. 
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Correction of the procedure

Correction of the current CBP for the maximum earthquake magni-
tude estimation can be made in several ways. Essentially, two
approaches can be applied. The first is a palliative approach in which
the effect of the bias in the maximum likelihood mmax estimation is
assessed and removed. The second approach is where the cause of the
bias is removed. A comprehensive discussion of the two approaches
will be the subject of a separate study. In this short paper, only the sim-
plest case of the palliative correction procedure is presented.

The reasoning leading to the correction of the CBP can be summa-
rized as follows: if the unbiased maximum likelihood estimator of mmax

is known, then the current Bayesian estimator of mmax would also pro-
duce an unbiased mmax. If so, the correction of the CBP can be made as
follows: first, the bias of the maximum likelihood estimation of mmax

must be assessed. Then, in formula (4), the sample likelihood function
L(m|mmax) is replaced with the same likelihood function, but shifted by
the amount of estimated bias. This can be modified relatively easily
since the formulas describing the bias of maximum likelihood estima-
tion of mmax are known. It is interesting to note that the suggested solu-
tion, which essentially consists of the replacement of an unknown
parameter by its unbiased estimate, is not new. In statistical literature
it is known as the Expectation-Maximisation (EM) algorithm and uses
the principle of the maximum likelihood to obtain unbiased estimates
of missing data.13

At least two formulas describing the bias in mmax estimation are cur-
rently in use. The simpler formula, derived by Tate,14 when applied to
estimation of mmax, takes the form:15,16

(5)

In the above formula, Δ denotes bias in mmax estimation and n is
number of seismic events with magnitudes equal to or exceeding the
level of completeness mmax. If Tate’s formula is applied to the frequen-
cy-magnitude Gutenberg-Richter relation with PDF (2), the bias in the
mmax estimation takes the form:15,16

(6)

The second formula describing the bias in mmax estimation is:

(7)

where FM ( |mmax) denotes the CDF of earthquake magnitude.

Article

Figure 4. The mmax estimation using the current Cornell’s Bayesian
Procedure. The Gaussian prior distribution is truncated from
both sides; from the left at and from the right at magnitude
9.5. The mean of the distribution (before truncation) is 6.92
(standard deviation 0.32). As the number of events increases, the
posterior distribution is dominated by the contribution of the
sample likelihood function with a maximum at magnitude. 
The earthquake magnitudes were generated according to the
Gutenberg-Richter magnitude distributions (2), where mmin=4.0,
mmax=6.92, and β=2.0. Above results depend on assumed differ-
ence between mmax and mmin. A reduction of this difference by 1
unit of magnitude leads to a reduction of the number of earth-
quakes approximately by one order. It means that the same effect
can be reached with the help of 10 times less earthquakes, if the
assumed level of completeness is mmin=5.0.

Figure 5. Comparison of performances of the mmax estimation
using the current and corrected Cornell’s Bayesian Procedures
(CBPs). For a small number of events, (less than ca. 100), both the
current and the corrected CBP perform similarly. In both cases,
the sample likelihood function is weak and most of the informa-
tion comes from the prior distribution. As the number of events
increases, the modified CBP provides a better assessment of mmax
than the original one. The synthetic earthquake magnitudes were
generated according to the Gutenberg-Richter magnitude distri-
butions (2), where mmin=4.0, mmax=6.92, and β=2.0. The results
depend on the assumed difference between mmax and mmin. A
reduction of mmax-mmin by 1 unit of magnitude leads to a reduction
of the number 100 to approximately 10, which means that the
same effect can be reached with only 10 earthquakes if the level of
completeness is mmin=5.0. 
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Cooke17 was the first to derive equation (7). It is interesting to note the
difference between equation (7) and the original equation derived by
Cooke.17 The former provides an equation in which the upper limit of

integration is . In equation (7) the upper limit of integration is
the unknown mmax. An obvious effect of this difference between the two
equations is that the relation in equation (7) is more difficult to imple-
ment; however, it provides a more accurate estimate of bias when the
number of observations is small.

For the frequency-magnitude Gutenberg-Richter relation, with the
CDF (3), equation (7) takes the form:18

(8)

where n1= n/{1-exp[-β(mmax-mmin)]}, n2= n1exp[-β(mmax-mmin)], and
E1 (·) denotes an exponential integral function. 

Since solution (8), based on the equation by Cooke,17 provides an
estimate of the bias with a significantly lower mean squared error than
the respective equation based on the equation (6) by Tate,14,18 formula
(8) has been used in all further calculations. 

The effect of implementing the above correction of the CBP (in case
of Gaussian prior) is shown in Figure 5. This figure shows that for a
small number of events (less than approx. 100 events with magnitude
≥4.0), both the current and corrected CBP perform similarly. It should
be remembered that this number of events depends on the difference
between mmax and mmax.The smaller the difference, the fewer the num-
ber of earthquakes needed to obtain the same assessment of mmax.

This is the case when the sample likelihood function is weak and
most of the information on mmax is determined by the prior distribution.
As the number of events increases, so does the difference in the per-
formance of both procedures. With the increase in the number of earth-
quakes, the assessment of the bias (8) becomes increasingly more
accurate, the maximum of the shifted sample likelihood function
becomes close to the true mmax and, consequently, the modified CBP
procedure provides a better assessment of mmax than the current one.
The difference in performance of the two procedures decreases only for
a very large number of events when the magnitude of the maximum

observed event approaches mmax.
It is important to note that Cornell, the author of the discussed

Bayesian procedure,2 was perfectly aware of all the limitations of his
approach. In fact, he suggests not using the procedure at all.2 In the
instance where the sample likelihood function dominates the posterior
distribution, (e.g. this instance is based on a catalog containing many
events, including historic earthquakes), he suggests replacing the
Bayesian formalism by the bias reduction practice similar to those of
Pisarenko15 and Kijko.18 For this purpose, he proposes to apply the fidu-
cial distribution of mmax

19 In contrast, when the sample likelihood func-
tion is weak (the number of events is small and/or the difference
between mmax and mmin is large), he stated that the current Bayesian
formalism cannot provide a reliable estimate of mmax. 

Conclusions

It has been shown that the currently used Bayesian procedure for the
estimation of the regional maximum possible earthquake magnitude
has a mathematical flaw which leads to bias of the estimated value of
mmax. The cause of the bias is one of the components of the posterior
distribution being the sample likelihood function for which the range

of observations (earthquake magnitudes) depends on the unknown
parameter mmax.This dependence violates the rule of optimal properties
of maximum likelihood estimators, known as the condition of regular-
ity.9 If the condition of regularity is not fulfilled, the resulting likelihood
function reaches its maximum at the maximum observed earthquake

magnitude and not at the required maximum possible magni-
tude mmax.

Since the sample likelihood function constitutes a key component of
the posterior distribution, the posterior estimate of mmax, (denoted as

𝑚̂ max) is biased. The degree of the bias and its sign depend on the
applied Bayesian estimator, the prior distribution, and the number and
magnitudes of seismic events used to construct the sample likelihood
function. 

The Monte-Carlo simulations show that if the MAP Bayesian estima-
tor is used, the bias is negative and the underestimation of mmax by the
current CBP can reach 0.5 units of magnitude. The degree of underes-
timation depends on the amount of information provided by each of two
components to the posterior distribution: namely, the prior distribution
π(mmax), and the sample likelihood function L(m|mmax). If the prior
information is well defined and L(m|mmax) is based, for example, on a
short instrumental catalog with only a few events, the underestimation

of 𝑚̂max will be minimal since all the information on mmax is provided by
the prior distribution. In the opposite case, when the sample likelihood
function is derived from many events, including historic earthquakes,
the posterior distribution is dominated by L(m|mmax) and its maximum

is between and the true mmax. Since ≤mmax this instance
leads to the underestimation of mmax.

The study explores only the MAP estimate of mmax which is concep-
tionally close to the classic maximum likelihood procedure. However,
conclusions regarding the shortfall of the CBP are applicable to all
Bayesian estimators which utilize the sample likelihood function
derived according to formula (1). For example, the second Bayesian
estimator, the posterior mean, in contrast to MAP, overestimates the
value of mmax. The overestimation can reach a value of one unit of mag-
nitude. Further studies are underway and a generic solution for the
problem is being developed. These will be the subject of future reports.
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