Appendix: Property of $F(m)$ and its relations to model criticality

It is evident from (16) that $\beta>\alpha$ is required. As it is shown later, the influences of these 3 parameters, A, α and β, to ζ and F is mainly due to their influences to the critical parameter ϱ. Here we are going to discuss $F(m)$ under all the three cases: 1° subcritical case, where each family tree dies off finally and the whole process is stable and stationary; 2° critical case, where each family tree dies off with a long tail and the population of the whole process in unit time increases unboundedly; and, 3°, supercritical case, where some of the family trees may never die off and the population of whole process will explode.

Function $F(m)$ is also closely related to the extinct probability of the family tree starting from an event of magnitude m, namely $P_{c}(m)$, which can be derived in the following way.

$$
\begin{align*}
P_{c}(m)= & \mathbf{P}\{\text { The family tree from an event of magnitude } m \text { extinguishes }\} \\
= & \mathbf{P}\{\text { an event of magnitude } m \text { produces finite number of offspring }\} \\
= & \sum_{n=0}^{\infty} \mathbf{P}\{\text { each child produces finite offspring } \mid m \text { has } n \text { children }\} \\
& \times \mathbf{P}\{m \text { has } n \text { children }\} \\
= & \sum_{n=0}^{\infty}\left[\int_{m_{c}}^{+\infty} s\left(m^{*}\right) P_{c}\left(m^{*}\right) \mathrm{d} m^{*}\right]^{n} \frac{[\kappa(m)]^{n}}{n!} \mathrm{e}^{-\kappa(m)} \\
= & \exp \left[-\kappa(m)\left(1-\int_{m_{c}}^{+\infty} s\left(m^{*}\right) P_{c}\left(m^{*}\right) \mathrm{d} m^{*}\right)\right] . \tag{22}
\end{align*}
$$

Substitute $P_{c}(m)=\exp [-C \kappa(m)]$ into (22), we have

$$
\begin{equation*}
C=1-\int_{m_{c}}^{+\infty} s\left(m^{*}\right) \exp \left[-C \kappa\left(m^{*}\right)\right] \mathrm{d} m^{*} \tag{23}
\end{equation*}
$$

Substitute (8) and (2) into (23),

$$
\begin{equation*}
C=1-\frac{\beta}{\alpha} C^{-\frac{\beta}{\alpha}} \Gamma\left(-\frac{\beta}{\alpha}, C\right) . \tag{24}
\end{equation*}
$$

Compare (23) to (11),

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} F(m)=C=-\frac{\log P_{c}(m)}{\kappa(m)} \tag{25}
\end{equation*}
$$

It is easy to prove that (23) has one solution C in $(0,1)$ if and only if the processes is supercritical, i.e., $\varrho=\int_{m_{c}}^{\infty} \kappa(m) s(m) \mathrm{d} m>1$.

For the subcritical case, which requires $\beta>\alpha$ and $\varrho=A \beta /(\beta-\alpha)<1$, it is easy to see that $F(m) \rightarrow 0$ when $m \rightarrow+\infty$ because $C=0$. That is to say, when the process is subcritical the larger the event, the less chance that it has a larger descendant. To discuss how fast F tends to 0 , it is useful to use the following approximation. If φ is not an integer,

$$
\begin{align*}
\Gamma_{\varphi}\left(x_{1}\right)-\Gamma_{\varphi}\left(x_{2}\right) & =\int_{x_{1}}^{x_{2}} u^{\varphi-1} \mathrm{e}^{-u} \mathrm{~d} u \\
& =\sum_{n=0}^{+\infty} \frac{(-1)^{n}\left(x_{2}^{n+\varphi}-x_{1}^{n+\varphi}\right)}{n!(n+\varphi)} \tag{26}
\end{align*}
$$

if $\varphi=-k$ is a non-positive integer, we can replace the k th item in the summation by $(-1)^{k} \log \left(x_{2} / x_{1}\right) / k$!. Equations (14) and (26) give

$$
\begin{equation*}
F(m)=1-\frac{\beta}{\alpha}[A F(m)]^{\frac{\beta}{\alpha}} \sum_{n=0}^{+\infty}(-1)^{n} X_{n}(m), \tag{27}
\end{equation*}
$$

where

$$
X_{n}(m)=\left\{\begin{array}{cc}
\frac{[A F(m)]^{n-\frac{\beta}{\alpha}}\left(\mathrm{e}^{(n \alpha-\beta)\left(m-m_{c}\right)}-1\right)}{n!\left(n-\frac{\beta}{\alpha}\right)}, & \text { for } n \neq \beta / \alpha \tag{28}\\
\frac{\alpha\left(m-m_{c}\right)}{n!}, & \text { for } n=\beta / \alpha
\end{array}\right.
$$

Now reconsider the behavior of the solution F under different conditions for the parameters. Formally expanding the exponential in the integral on the right side of (27) and setting $m_{c}=0$ to abbreviate the notation, we obtain

$$
\begin{equation*}
F(m)=e^{-\beta m}+\frac{A \beta}{\beta-\alpha} F(m)\left[1-e^{(\alpha-\beta) m}\right]+\frac{A^{2} \beta}{2(2 \alpha-\beta)} F^{2}(m)\left[1-e^{(2 \alpha-\beta) m}\right]+\cdots . \tag{29}
\end{equation*}
$$

Since $\frac{A \beta}{\beta-\alpha}=\rho$, this reduces to

$$
\begin{equation*}
(1-\rho) F(m)=e^{-\beta m}-\rho F(m) e^{(\alpha-\beta) m}+\frac{A^{2} \beta}{2(2 \alpha-\beta)} F^{2}(m)\left[1-e^{(2 \alpha-\beta) m}\right]+\cdots . \tag{30}
\end{equation*}
$$

When the process is subcritical, because we are looking for the solution of $F(m)$ such that $F(m) \mathrm{e}^{\alpha\left(m-m_{c}\right)} \rightarrow 0$ when $m \rightarrow \infty,(30)$ can approximately by keeping the first two terms, which gives

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{F(m)}{s(m)}=\frac{1}{\beta(1-\varrho)} \tag{31}
\end{equation*}
$$

If $\rho=1$ (critical case) the left side of (30) vanishes. We have then $A=1-\alpha / \beta$, and we may write

$$
\begin{equation*}
0=1+\mathrm{e}^{\alpha m} F(m)+\frac{A^{2} \beta}{2(2 \alpha-\beta)} F^{2}(m) \mathrm{e}^{\beta m}\left[1-e^{(2 \alpha-\beta) m}\right]+\cdots \tag{32}
\end{equation*}
$$

Here some care is needed to sort out the leading terms. For $\beta / 2<\alpha<\beta$, it can be claimed that a solution exists with leading term

$$
F(m)=\mathrm{e}^{-\alpha m}[1+o(1)]
$$

Under these conditions the order F term in (32) remains of order 1 while $F^{2}(m) \mathrm{e}^{\beta m} \rightarrow 0$.
However, in the case $\alpha \leq \beta / 2$, it is the F^{2} term which dominates. We claim that a solution exists in which the leading term has the form

$$
F(m)=A^{-1} \sqrt{2}(1-2 \alpha / \beta)^{-\frac{1}{2}} e^{-\beta m / 2}
$$

for the F term in (32) is then order $\mathrm{e}^{-(\beta / 2-\alpha) m}$, and converges to zero, as does $F^{2} \mathrm{e}^{\beta m} \mathrm{e}^{(2 \alpha-\beta) m}$, while $F^{2} \mathrm{e}^{\beta m}$ remains bounded, leading to a solution of the form claimed.

In the first of the two cases, ζ is approximately a function of $m-m^{\prime}$, whereas in the second case it is a function of $\alpha m-\beta m^{\prime} / 2$. The first form holds in situations where the family size grows rather quickly with the parent's magnitude m^{\prime}, while the second form holds only in situations where the growth is relatively slow. Both forms of ζ are illustrated in the diagrams.

When the process is supercritical, $\varrho>1$ and $C>0$. Equation (25) yields

$$
\begin{equation*}
\lim _{m \rightarrow \infty} F(m)=C \tag{33}
\end{equation*}
$$

implying that $F(m)$ tends to a positive constant when m is sufficiently large. That is, the probability that the population of the family tree be infinite is greater than 0 when the process is supercritical.

