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Abstract 

Based on the ETAS (epidemic-type aftershock sequence) model,
which is used for describing the features of short-term clustering of
earthquake occurrence, this paper presents some theories and tech-
niques related to evaluating the probability distribution of the maxi-
mum magnitude in a given space-time window, where the
Gutenberg-Richter law for earthquake magnitude distribution cannot
be directly applied. It is seen that the distribution of the maximum
magnitude in a given space-time volume is determined in the long-
term by the background seismicity rate and the magnitude distribu-
tion of the largest events in each earthquake cluster. The techniques
introduced were applied to the seismicity in the Japan region in the
period from 1926 to 2009. It was found that the regions most likely to
have big earthquakes are along the Tohoku (northeastern Japan) Arc
and the Kuril Arc, both with much higher probabilities than the off-
shore Nankai and Tokai regions. 

Introduction

The Poisson model, or other renewal models, are often used to
evaluate the long-term risk of large earthquakes in a particular
region. However, clusters of aftershocks complicate the statistical
analysis that evaluates the background seismic activity. The cluster-
ing features differ from place to place. To forecast the location of the
large earthquakes, it is necessary to analyze the background seismic-

ity, for which removal of temporal cluster members is considered to
be of central importance. Both the background rate and the cluster-
ing structures are important to earthquake hazard estimation,
because the background rate tells us the potential risk of the occur-
rence of an earthquake cluster, and the clustering structure deter-
mines the size of the earthquake cluster and the magnitude of the
biggest event in a cluster. 

In the literature of seismology, people traditionally use some win-
dow based methods1-3 or link-based methods4-6 to decluster the cata-
log or to identify earthquake clusters. The parameters in these
declustering rules depend to a large degree on the intuitions and
experience of researchers, sometimes even colored by the user’s sub-
jective impression of the declustered output. The space-time epidem-
ic-type aftershock sequence (ETAS) model describes the features of
earthquake clusters. It has become a standard model for testing
hypotheses and a starting point for short-term earthquake fore-
casts.7-12 Based on this, Zhuang et al.13 proposed the stochastic
declustering method to separate seismicity into a background com-
ponent and a clustering component in a probability manner, follow-
ing the initial ideas by Kagan and Knopoff.14 This method can also
produce stochastic versions of declustered catalogs similar to the
output of the conventional earthquake declustering methods. 

The aim of this article is to show how to use the background rate
and the clustering structure to estimate the probability of future
large earthquakes in a particular region. A brief description of the
ETAS model is given and its use to separate the background rate from
overall seismicity is discussed. Problems in estimating the back-
ground rate and the parameters of the clustering structure are exam-
ined. Formulas are then elaborated to evaluate the probabilities
related to the magnitude of the largest descendant from an initial
event with a given magnitude. Based on these probabilities, the prob-
ability density of the magnitude distribution of the largest earth-
quake in an arbitrary earthquake cluster is calculated. In order to
illustrate this, we use the approach set out in the Japan
Meteorological Agency (JMA) catalog to estimate earthquake risk in
the Japan region. 

Definition of the epidemic-type aftershock
sequence model

In the ETAS model, there is no difference in triggering seismicity
among foreshocks, mainshocks and aftershocks. Each event triggers
its own offspring independently according to some probability rules.
In brief, the time-varying seismicity rate (mathematically termed as
conditional intensity) of this model takes the form of: 
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where 
a) m(x, y) represents the background seismicity rate; b) the term κ(mi)
g(t − ti) f(x − xi, y − yi, mi) is the contribution to seismicity rate by the
ith event occurring previously, and

is the mean number of direct offspring from an event sized m, mc being
the magnitude threshold, and

and

represents the probability density functions for the occurrence times
and locations of direct offspring, respectively. In equations (2), (3) and
(4), A, a, c, p, D, q and g are constant parameters. 

Equation (3) is the probability density form of the Omori-Utsu for-
mula.15-17 The form of equation (4) is based on the analysis in Zhuang
et al.18 and Ogata and Zhuang,19 which are improved versions of those
in Ogata.20 Many other forms can also be found in papers published
over last 20 years.8,21

Model estimation

To forecast seismicity by using the model specified by equation (1),
we need to solve the following technical problems: i) estimating back-
ground seismicity rate; and ii) estimating the model parameters, (A, a,
c, p, D, q, g). 

Maximum likelihood estimates 
For an observation of the process, recorded as a list in the form of {(ti,

xi, yi, mi): i=1, ···, N}, from a spatial region S and a time interval [0,T],
the likelihood has the standard form.22

If the background seismicity rate m(x, y) is known, the model param-
eters, (A, a, c, p, D, q, g), can be estimated through maximizing the like-
lihood function. In computation, the Davidon-Fletch-Powell method23 is
used to minimize – ln L. 

Estimating background seismicity 
Many different approaches to assess background seismicity rate have

also been used: i) using a rate proportional to total seismicity rate of all
events or only of the big events in the catalog;20,24 ii) using a decluster-
ing method to decluster the catalog and use the total rate in the declus-
tered catalog as background rate;20,25,26 iii) weighting each event by an
estimated probability that it is a background event;10,13 and iv) using the
method introduced by Ogata,27 which is a Bayesian smoothness prior on
a tessellation grids to estimate the spatial variation of the background
and the model parameter at the same time. 

In this study, the third method is used because it is relatively simple
and gives an unbiased estimate of the intensity function. First of all,
once the conditional intensity function is estimated, the contribution of
the spontaneous seismicity rate at the occurrence of the ith event, 

provides an estimate of the probability that the ith event is a background
event, since, if we keep the ith event with probability ϕi for all the events
in the process, we can obtain a process with the occurrence rate of m(x,
y).28,29 Thus, the background intensity can be estimated by applying
some smoothing techniques to the background catalog. Or, more effi-
ciently, we can directly estimate the average by weighting all the events
with their corresponding background probabilities. In this study, the
variable kernel estimates13 were chosen, i.e.

where i runs over all of the events in the whole process, T is the length
of the time period of the process, and Zd is the Gaussian Kernel function
with a bandwidth d. The variable dj represents the varying bandwidth
calculated for each event j in the following way. Given a suitable integer
np, find the smallest disk centered at the location of the jth event which
includes at least np other earthquakes and whose radius is larger than
some minimum value (e.g. a distance within 0.02 degrees, which is the
order of the location error), d, and let this minimum radius be dj. 

To find optimal values of np and d, the above variable kernel estimates
were applied to estimate the rate of a simulated inhomogeneous
Poisson point process. Through cross-validation,30 it is found that the
optimal np is in 3 ∼ 6. The parameter d does not influence the prediction
too much, as long as the locations of points are not rounded to a certain
precision. This parameter only becomes important when some points
happen to overlap at one location caused by rounding the number.

Iterative algorithm 
To estimate the model parameters and the background seismicity rate
simultaneously,10,13 the following iterative algorithm can be introduced.
A1. Given a fixed np and d, (5 and 0.05 degree, equivalent to 5.56 km on
the earth’s surface, which is close to the location error of earthquakes),
calculate the bandwidth hj for each event (tj, xj, mj), j = 1, 2, ··· , N. 
A2. Set ℓ←0, and u(0)(x, y)←1. 
A3. Using the maximum likelihood procedure, fit the model with condi-
tional intensity function 

to the earthquake data, where κ, g and f are defined in equations (4),
(5) and (6), and ν is the relaxing coefficient, which is introduced in
order to fasten the convergency speed of this algorithm. The model
parameters are (ν, A, a, c, p, D, q, g). 
A4. Calculate ϕj for j = 1, 2, ··· , N by using equation (6). 
A5. Calculate m(x, y) by using equation (7) and record it as u(ℓ+1)(x, y). 
A6. If max|u(ℓ+1)(x, y)− u(ℓ)(x, y) | >ε, where ε is a given small positive
number, then set ℓ←ℓ+1 and go to step A3; otherwise, take νu(ℓ+1)(x, y)
as the background rate and also output ϕi. 

Theoretical distributions associated with
the largest magnitude of all the descendants
from a given event

The method for obtaining the background rate is based on the space-
time ETAS model, i.e. the occurrence rate of the clusters. However, the
hazard caused by earthquake clusters not only depends on their occur-
rence rate, but also on the magnitudes of large events in each cluster.
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The largest magnitude in an arbitrary cluster and in a given space-time
volume must be evaluated. 

Basic equations 
First, assume that the probability density function (p.d.f), s(m), for all

the magnitudes obeys the Gutenberg-Richter law (exponential distribu-
tion), i.e.

where β is the constant linked with the Gutenberg-Richter’s b-value by
β=b ln 10 and mc is the magnitude threshold. 

Note the number of children from an event of magnitude m is a
Poisson random variable with a mean of κ(m), i.e.

Pr {an event sized m has n direct offspring} =

The probability that an event of magnitude m has no offspring greater
than m¢, which is the same as the probability that the largest descen-
dant from an event of magnitude m is smaller than m¢, can be derived
from the model analytically31 in the following way: 

It is evident that ζ(m, m’) has the form 

where 

represents the probability that the largest earthquake in an arbitrary
cluster, including the initial event and all its descendants, is greater
than m¢. Thus, F(m) gives the largest magnitude in an arbitrary cluster.
In other words, the magnitude distribution of the largest event in a clus-
ter is no longer Gutenberg-Richter law, but determined by functional

equation (13). Considering that the background ground rate m(x, y)
gives the occurrence rate of earthquake clusters, a combination of F(m)
and the background rate provides information on the maximum magni-
tude of future earthquakes. 

Asymptotical properties of F(m) 
Because F(m) is a function determined by κ(m) and s(m), it is

influenced only by the parameters A, a and β in the model. Substituting
equations (9) and (2) into equation (13) we obtain 

where is the complementary incomplete gamma func-
tion. An analysis with moment generating functions32 also gave similar
forms of the above equations. But they did not consider the case in
which the process is supercritical. The properties of F(m) are closely
related to the criticality of the process.31 According to the Appendix (see
also Zhuang et al.33), the critical parameter ρ is determined by 

Substituting equations (2) and (9) into the above equation, 

it is evident that β>a is required. According to the discussion in the
appendix, F has the following properties:31,34

i) subcritical case ( <1) where each family tree ultimately dies off and
the whole process is stable and stationary. When m is large enough, 

ii) critical case ( =1), where each family tree dies off with a long tail
and the population of the whole process in unit time experiences an
unlimited increase. In this case, the asymptotic property of F branches
according to the relative values of a and β.34 When β/2<a<β, 

and when a≤β/2

Article

Figure 1. Influence of A, a and β to function F(m). (A) Parameter A changes, but a=1.2 and β=2.4 are fixed. (B) Parameter a changes,
but A=0.3 and β=2.4 are fixed. (C) Parameter β changes, but A=0.3 and a=1.2 are fixed. The thin solid, thick solid and dashed curves
represent the subcritical, critical and supercritical regimes, respectively.
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iii) supercritical case ( ≥1), where some of the family trees may never
die off and the population of the whole process explodes, F(m) ∼ C,
where C is linked with the extinct probability Pc(m) of the family start-
ing from an event of magnitude m by Pc(m)=e–Cκ(m). 

Using the following iteration algorithm, F(m) can be solved for each
value of m

In Figure 1, first two of A, a and β are fixed and then the other is
changed to see how F(m) changes. As discussed above, the influence of
all the three parameters, a, β and A, to F(m) is through their influence
to the criticality, i.e. the properties of F(m) can be divided into three
regimes: subcritical, critical and supercritical, where F(m) ∼ s(m), F(m)
∼ 1/κ(m) and F(m) ∼ C, respectively. 

Probabilities of a future large earthquake 
It should be remembered that F(m) is the survivor probability func-

tion of the magnitude of the biggest event in a cluster, including the ini-
tial event and all its descendants. Given a space-time window V and a
magnitude m, the probability that the largest event in V is greater than
m can be evaluated in the following way: 

where is the mean number of clusters occur-
ring in V.

Here it is assumed that all events of a cluster occur at the same loca-
tion and at the same time, which may not be true. However, for long-
term risk evaluation, such a simple approximation is reasonable and
also reduces the calculation tasks. 

It should be noted that the above equation only holds true when the
process is stationary, i.e. subcritical. In the case of supercritical or crit-
ical processes, the population of the process explodes to infinity. Except
for the trivial case of Λ(V)=0, the largest event in V can theoretically
exceed any magnitude. 

Results

To illustrate the above procedures, the JMA (Japan Meteorological
Agency) earthquake catalog was used to evaluate the example of the
long-term probabilities of large earthquakes in and around the Japan
region. First, data were selected from the JMA catalog in the ranges of
longitude 128°-148°E, latitude 30°-45°N, depth 0-100 km, over the peri-
od from 1 January 1926 to 31 December 2009, and magnitude MJ≥4.0.
There are 36,144 events in this dataset. Figure 2 shows the locations of
the epicenters and occurrence times of events in the dataset. 

Before fitting the space-time ETAS model to the catalog, some prepro-
cessing of data is necessary. For the earthquake catalog as in this study,
which covers records of a time period of 38 years, completeness and
homogeneity are usually problems for statistical analysis. If seismicity
in some regions or the whole region has an increasing trend, the fitting

Article

Figure 2. (A) Epicenter map of the shallow earthquakes (MJ≥4.0
and depth ≤100, 1 January 1926 to 22 September 2003) from the
JMA catalog. (B) A space-time plot of latitudes against occurrence
times, and (C) a space-time plot of occurrence times against lon-
gitudes. The polygon in (A) represents the target region used in
the likelihood computation, and the black dots and red dots rep-
resent the target events and complementary events, respectively.

Non
-co

mmerc
ial

 us
e o

nly



[page 56] [Research in Geophysics 2012; 2:e8]

results often do not converge or they converge to some unreasonable
values. Thus, a space-time range was chosen, in which the seismicity
seems to be relatively and visually complete and homogeneous above
4.0, as the target space-time range of data to fit the model (Figure 2A
and Table 1 in Zhuang35). The events outside this target space-time
range are used as complementary events for calculating the conditional
occurrence rate �in order to illuminate the boundary effect (see also
Zhuang35). 

The same estimates as previously described35 were used in this study,
i.e. =0.383 (events/day), =0.232 (events), =0.00578 day, =1.41
(m−1), =1.08, =1.01×10−5 (deg2), =1.59 and =1.38 (m−1),
which is also similar to the results of Zhuang et al.9,10 The estimated
background seismicity rates are shown in Figure 3. 

The spatial variations of the β-value (b-value) in the magnitude dis-
tribution are evaluated by using the MLE (maximum likelihood esti-
mate) method: at the locations of each 0.1°×0.1° grid, 

where (x, y; k) represents the mean magnitude of the k closest earth-
quakes to (x, y), and 0.05 is the correction of the estimation error
caused by rounding the magnitude to 1 digit in the catalog. The results
are shown in Figure 4. 

Substituting m(x, y), β(x, y), and the values of and into equation
(21), the probabilities that at least one event occurs in a 1°×1°×1-year
space-time window with a magnitude no less than MJ 5, MJ 6 and MJ 7 are
evaluated and plotted in Figure 5. From Figure 5 a series of conclusions
can be drawn. i) The regions with highest probabilities are the Tohoku
(northeastern Japan) Arc and the Kuril Arc, and the northern end of the
Ryukyu Arc, which is east to the Kyushu Island. ii) Comparing these loca-
tions to the Tokai and Nankai regions, which are both offshore south of
the Honshu and the Shikoku islands, such probabilities are relatively
lower than the Tohoku (northeastern Japan) Arc and the Kuril Arc
regions, and the northern end of the Ryukyu Arc. iii) Along the middle
ridge of Honshu island, which makes up the major part of the volcanic
front in the Japan region, occurrence probabilities in unit space-time vol-
ume are much lower than in the coastal and offshore regions. iv) The
coastal and offshore regions of the sea around Japan have similar earth-
quake probabilities to the Tokai and Nankai regions.

Conclusions

The ETAS model gives a natural description of earthquake clusters
that can be used as a starting point for studies of seismicity patterns.

Article

Figure 3. Background seismicity rate (occurrence rate of earth-
quake clusters) [events/(day·deg2)] of earthquakes with magnitude
MJ≥4.0, obtained based on the space-time ETAS model.

Figure 4. Spatial variations of b-values estimated by variable ker-
nel estimates.

Figure 5. Spatial variations of the occurrence probabilities that at least one earthquake in a 1°¥1°¥ l-year space-time volume is greater
than MJ 5.0 (left panel), MJ 6.0 (middle panel) and MJ 7.0 (right panel).
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Based on the stochastic declustering method, we can objectively decom-
pose the seismicity into the background and clustering components.
The background component can be used to estimate long-term earth-
quake hazards as declustered catalogs (declustered by window-based or
link-based declustering methods). However, only using a simple combi-
nation of the background rate and the Gutenberg-Richter law for the
magnitude distribution might underestimate such risks, since the max-
imum magnitude in an earthquake cluster no longer obeys the
Gutenberg-Richter law, but a different distribution as described above
by equation (14). Instead, more viable forecasts can be made by using
the equation (21) to correct the bias. For data analysis, the seismicity in
and around the Japan region was used to show how to apply the proce-
dures and techniques introduced in this study. The results show that the
Tohoku Arc and Kuril Arc are the regions at the greatest potential risk
of having large earthquakes in the future and that this risk is much
higher than in the Tokai and Nankai regions where scientists and the
public at large expect one or more earthquakes of M7.5 or over. 

The data analysis in this study is based on the hypothesis that future
seismicity follows similar patterns seen in the past. This may not be true.
For example, some areas currently in a quiescent period may be re-acti-
vated in the future. Certainly, any practicable models for long-term earth-
quake forecast should consider these possible large-scale changes in seis-
micity. However, before considering more advanced conditions, a solid
reference model should be built to provide a null hypothesis by which to
test whether these more complicated models offer any advantages. 
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