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Abstract 

A hallmark of rheumatoid arthritis (RA) is
the pseudo-tumoral expansion of fibroblast-
like synoviocytes (FLS), as these cells invade
and finally destroy the joint structure. RA FLS
have been proposed therefore as a therapeutic
target. The TNF-related apoptosis-inducing lig-
and (TRAIL) has gained much attention as a
possible therapeutic reagent for the treatment
of tumors, as TRAIL was described originally
to induce apoptosis specifically in cancer cells
but not in normal cells. The fact that FLS in RA
patients exhibit tumor-like features led to
investigations on the effect of TRAIL on ex-
vivo RA FLS. In this review we aim to summa-
rize what is presently known on the role of
TRAIL in RA.

Introduction

Rheumatoid arthritis (RA) is a systemic
inflammatory disease affecting the joint lining
tissue called synovium. The synovium is nor-
mally a relatively acellular structure with a del-
icate intimal lining that is one or two cell lay-
ers thick. The rheumatoid synovial tissue is
characterized by hyperproliferation of fibro-
blast-like synoviocytes (FLS) in the intimal lin-
ing layer and infiltration of the sublining by
macrophages, and T- and B-cells, which pro-
mote inflammation and destruction of bone
and cartilage. The hyperplasia of synovial
fibroblasts in RA contributes to joint destruc-
tion, directly through enhanced production of
matrix-degrading enzymes, and indirectly
through excessive release of proinflammatory
cytokines. The proliferation of RA FLS is con-
sidered to be pseudo-tumoral, as RA FLS prolif-
erate in an anchorage-independent manner,
lack contact inhibition, and express oncogenes
and cell cycle proteins indicative of transfor-
mation.1 Besides an increased proliferation,
insufficient apoptosis might contribute to the

increased numbers of synovial fibroblasts in
RA joints, as apoptosis plays a crucial role in
controlling cell numbers by eliminating old
cells, unnecessary cells, and unhealthy cells.2

Therefore one strategy to treat rheumatoid
arthritis is the design of drugs that can restore
the normal apoptotic pathways in synovial
fibroblasts.2

Ligands of the tumor necrosis factor (TNF)
family are trimeric cytokines that have an
important role in inducing various biological
responses such as cell proliferation, differenti-
ation, survival, and apoptosis.3 TNF-like lig-
ands capable of inducing apoptosis by binding
to their cognate receptors, so-called death
receptors, include TNF itself, Fas (CD95) lig-
and, and the TNF-related apoptosis-inducing
ligand (TRAIL). The death receptors of the TNF
family are potential targets for inducing apop-
tosis in malignant cells. In recent years, con-
siderable attention has been focused on the
potential benefits of TRAIL in cancer therapy,
as a broad range of cancer cells are sensitive to
TRAIL-induced apoptosis.4 In addition, the use
of TRAIL in combination with chemotherapeu-
tic agents or irradiation strengthens its apop-
totic effects and frequently sensitizes other-
wise TRAIL-resistant tumor cells. Importantly,
TRAIL-exposure shows no toxic side effects of
therapeutically relevant doses in primates5 or
in humans.6 Likewise agonistic antibodies tar-
geting either DR4 or DR5 are well tolerated in
patients.7-11 The fact that FLS in RA patients
exhibit tumor-like features led to investiga-
tions on the effect of TRAIL in RA. In this
review we aim to summarize what is presently
known about the role of TRAIL in RA.

TRAIL in general

TRAIL is a type II membrane ligand that
belongs to the TNF super-family, and is mainly
known to its ability to trigger cell death in a
somewhat tumor selective manner.12 Like most
TNF-related ligands however, TRAIL has been
demonstrated to exert pleiotropic functions
including abilities to trigger cell proliferation
or differentiation.13,14 Apoptosis triggering by
TRAIL involves principally two receptors, DR4
and DR5 also known as TRAIL-R1 and TRAIL-
R2, which upon binding to their cognate ligand
engage the recruitment of the adaptor protein
FADD and initiator caspases (caspase-8 and/or
-10) via homotypic interactions through the
death-domain and the death-effector-domains,
respectively, leading to the formation of the so-
called DISC (death inducing signaling com-
plex).15 Notably, the TRAIL ligand/ receptor sys-
tem differs between mouse and humans.16,17

For example, only one TRAIL receptor contain-
ing a death-domain has been identified in the
mouse.

In type I cells, DISC formation and caspase-
8 activation generally is sufficient to promote
caspase-3 processing and apoptosis triggering.
In type II cells, DISC formation and caspase-8
activation are weaker compared to type I cells,
and full caspase-3 activation occurs through
the mitochondrial amplification loop via Bid
cleavage.18 Efficient DISC engagement is the
limiting factor that defines caspase-8 activa-
tion and thus cellular dependency to type I or II
signaling pathways. Accordingly, it has been
demonstrated that the mitochondrial require-
ment in some type II cells could be overcome by
increasing the concentrations of TRAIL.19

Likewise, negative regulation of TRAIL DISC-
induced formation occurs in cells that express
DcR1 or DcR2, also coined TRAIL-R3 and
TRAIL-R4.20 DcR1 and DcR2 are devoid of a
functional death-domain and impair TRAIL-
induced cell death either directly by competing
with their cognate ligand, or through regulato-
ry inhibitory activity leading to reduced cas-
pase-8 processing within the TRAIL DISC.20,21

Similar to DcR1, the soluble receptor OPG,
albeit exhibiting the lowest affinity for TRAIL
among the TRAIL receptors, is able to compete
for TRAIL binding and thus impair TRAIL-
induced signaling.22,23

The TRAIL system is probably one of the
most complex members of the TNF family,
owing to the large number of receptors to
which TRAIL can bind and to the signaling
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pathways that are engaged. DR4 and DR5 are
both capable of triggering apoptosis and are
the receptors that exhibit the highest affinity
for TRAIL.24 The existence of two apparently
redundant receptors may have physiological
meaning and it is thought that they could play
distinct roles with respect to the control of tis-
sue homeostasis or activation of secondary
signaling pathways. Accordingly, while most
cancer cell lines engage either DR4 or DR5 to
trigger TRAIL-induced apoptosis,25 chronic B-
cell leukemia cells engage DR4 preferentially
despite co-expressing DR5,26 and some colon
carcinoma cell lines preferentially engage
DR5.27 The reasons for these specific engage-
ments are not clear. Recently DR4- and DR5-
mediated apoptosis were shown to be con-
trolled by O-glycosylation,28 a finding that could
help explain the specific engagement or the
importance of each agonistic receptor with
respect to TRAIL-induced signaling pathways.
Indeed, some DR5 “specific” TRAIL mutants
revealed that the JNK pathway is preferential-
ly activated by DR5.29

Besides the TRAIL membrane-bound com-
plex I or DISC, TRAIL was recently demonstrat-
ed to initiate the formation of a secondary
complex, which contrarily to TNF,30 is thought
to be required to trigger nonapoptotic signal-
ing activities including the activation of the
NF-kB, JNK, or p38 pathways.31 TRAIL has been
described to induce cell proliferation or cell
survival in many cell types including vascular
smooth muscle cells, synovial fibroblasts, vas-
cular endothelial cells, or cancer cells,32-38 as
well as to induce intestinal, skeletal myoblast,
or osteoclast differentiation.13,14,39 Animal mod-
els in which TRAIL expression has been inac-
tivated demonstrated that TRAIL plays a crucial
role in immune tumor surveillance,40 and that
it could contribute to the control of some
autoimmune diseases41,42 including rheuma-
toid arthritis.  

TRAIL in rheumatoid arthritis

The first report linking TRAIL with arthritis
came from a mouse study using the collagen-
induced arthritis (CIA) model.41,43 In this model
susceptible mouse strains with type II collagen
(CII) from heterologous species lead to a
pathology that resembles human RA called col-
lagen-induced arthritis (CIA)44 including foot-
pad swelling, synovitis, pannus formation, and
bone and cartilage destruction of paw joints.
Both CII antibodies and CD4+ T-cells are
required for the development of CIA, and the
classical mouse strain used for the CIA model
is DBA/1 mice. Using the CIA model Song and
co-workers observed that blockade of TRAIL in
mice using a soluble recombinant receptor
exacerbated autoimmune arthritis, whereas

intra-articular TRAIL adenoviral gene transfer
diminished the symptoms.43 Blockage of TRAIL
resulted in an increased proliferation of syn-
oviocytes and intra-articular lymphocytes.
Moreover, the authors could demonstrate that
TRAIL prevented cell cycle progression of lym-
phocytes in vitro. The capacity of TRAIL to con-
trol CIA was confirmed using TRAIL-/- mice.41

TRAIL-/- C57BL/6 mice developed severe arthri-
tis indistinguishable from arthritis in DBA1,
whereas TRAIL+/+ C57BL/6 mice were not sus-
ceptible to CIA owing to their genetic back-
ground. Mice deficient for TRAIL were found to
have increased cellular and humoral immune
responses against self-antigens. Two other
studies employed adenoviral-mediated gene
transfer of TRAIL in animal models of arthritis.
In an Il-1β triggered rabbit model of arthritis
intra-articular adenoviral TRAIL delivery was
shown to modulate inflammation.45 In this
study the attenuation of inflammation was cor-
related with TRAIL-induced apoptosis in cells
within the synovium. The same authors
obtained similar results by using recombinant
TRAIL instead of TRAIL-encoding adenovirus.46

In a preclinical study by Liu et al. dendritic

cells were transduced with an adenovirus-
based vector able to express TRAIL and pulsed
with collagen, the autoantigen responsible for
disease in the CIA model. The primed dendrit-
ic cells were predicted to specifically interact
and thus eliminate, only those T-lymphocytes
that recognize the collagen. Indeed, treatment
with TRAIL-expressing collagen-pulsed den-
dritic cells limited the incidence of arthritis in
the CIA model by modulating T-cell responses
and correlated with detection of apoptotic T-
cells in the spleen. In addition, B-cell respons-
es were affected as titers of anti-collagen II
antibodies were lower. Taken together, the
results obtained in animal models for arthritis
support the concept that TRAIL has a therapeu-
tic potential although the underlying mecha-
nisms remain to be clarified.  

The pseudo-tumoral proliferation of RA FLS
is considered to be the major mechanism for
the hyperplasic growth of the RA synovium and
can be mimicked by in vitro culturing, since ex
vivo RA FLS cells grow in normal medium
without requiring additional stimulation.
Various groups have tested how TRAIL does
modulate these RA FLS cultures: a study by
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Figure 1. The complex role of TRAIL in rheumatoid arthritis. TRAIL appears to control
T- and B-cell responses. On human synovial fibroblasts (FLS), TRAIL acts as a pleiotrop-
ic cytokine: (A) TRAIL can trigger apoptosis by forming the DISC in FLS cells. Activated
caspase-8 initiates apoptosis by direct cleavage of downstream effector caspase-3 (Pro-
C3) and Bid. (B) FLS overexpressing antiapoptotic molecules such as Mcl-1 or IAPs
members, XIAP or survivin for example, are resistant toward TRAIL-induced apoptosis
and survive. Activation of the PI3 kinase/Akt signaling pathway mediates FLS survival
as well. (C) FLS can proliferate upon TRAIL treatment by activating PI3K and MAPK
pathways. Activation of caspase-8 triggers FLS proliferation by cleavage of the cell cycle
inhibitors p21 and p27.
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Ichikawa et al. described TRAIL-R1 and -R2
expression on primary isolated FLS from RA
patients and analyzed the effect of TRAIL on
RA FLS for short culturing periods; that is, up
to 24 hours. Varying levels of apoptosis were
induced by TRAIL on the different RA FLS cul-
tures tested, in which a portion of cells sur-
vived.47 These RA FLS strongly expressed
TRAIL-R2 and were highly susceptible to an
agonistic anti-TRAIL-R2 antibody, identifying
TRAIL-R2 as the receptor mediating TRAIL-
induced apoptosis.47 These observations are in
agreement with a report by Miranda-Carus et
al.48 In this study, 50 fibroblasts from RA syn-
ovial fluid samples were analyzed and about
half of them were found to express TRAIL-R2.
These cells underwent apoptosis when treated
in vitro with an agonistic anti-TRAIL-R2 anti-
body.48 While these reports suggested the spe-
cific targeting of TRAIL-R2 on RA FLS as a
potential therapeutic approach, Perlman et al.
drew the opposite conclusion because they
could not detect the expression of TRAIL-R1 or
TRAIL-R2, or the susceptibility to TRAIL in RA
FLS.49 Another study by Park et al. concluded
that cultured FLS are not sensitive to TRAIL-
induced apoptosis in spite of TRAIL-R1 expres-
sion, whereas FLS became sensitive in the
presence of actinomycin D or cycloheximide.50

One report correlated resistance of RA FLS for
TRAIL-induced apoptosis with expression lev-
els of TRAIL-R4, as TRAIL-R4 siRNA could sen-
sitize FLS.51

Our group has analyzed in two studies
TRAIL-responses of RA FLS.35,52 We detected
expression of the TRAIL receptors 1 and 2 on
FLS, and described that both recombinant
TRAIL as well as an agonistic anti-TRAIL-R2
antibody induces apoptosis only in a subset of
RA FLS that is followed by an induction of pro-
liferation in the surviving cells.35 Notably, the
observed dual functionality of TRAIL on RA FLS
concurs with the previously reported pleiotrop-
ic responses of TRAIL in primary human tumor
cells.35,53 We observed a variation in TRAIL-sen-
sitivity of RA FLS according to the patients
from which they are derived, which is in agree-
ment with the report of Ichikawa et al.47

A possible explanation for the opposing
observations on TRAIL-sensitivity of RA FLS
might be the use of different protocols to iso-
late and/or culture synovial fibroblasts
obtained from biopsies. For example, RA FLS
were shown to produce the endogenous decoy
receptor OPG that can interfere with the effi-
ciency of recombinant TRAIL on cell cultures
that have not received fresh medium.22 Another
important factor appears to be the cell cycle
dependency of RA FLS for TRAIL-induced apop-
tosis.54 The discrepancy in reported TRAIL
receptor expression might be because of the
different antibodies used.  

While most studies focus on TRAIL respons-
es on synovial fibroblasts, one study analyzed

synovial T-cells.55 Lorenzo et al. reported that
synovial fluid T-cells from RA patients are sen-
sitive to TRAIL- but not Fas ligand-induced
apoptosis. Several reports characterized
TRAIL-induced signaling in RA FLS. The group
of Zhang analyzed FLS treated with the protea-
some inhibitor lactacystin and described a
specific role for p53 in TRAIL-R2-mediated
apoptosis. Under these conditions p53 siRNA
was able to reduce TRAIL-induced apoptosis.56

Caspase-4 was found to induce cleavage of
vimentin associated in a complex with p53,
thus releasing p53. We could demonstrate the
involvement of the ERK p38 and PI3 kinase/Akt
signaling pathways in TRAIL-induced RA FLS
proliferation, but that only PI3 kinase/Akt pro-
tects RA FLS from TRAIL-triggered apoptosis.
In line with this is a study by Miyashita et al.
reporting that Akt renders RA FLS resistant to
TRAIL-induced apoptosis.57 Moreover, we
found that not only TRAIL-induced apoptosis,
but also TRAIL-triggered proliferation in RA
FLS is mediated by caspases via degradation of
the cell cycle inhibitors p21 and p27. We there-
fore suggest that caspases act synergistically
with PI3 kinase and/or MAP kinases to medi-
ate TRAIL-induced proliferation in RA FLS. A
correlation of p21 expression levels with cell
viability in TRAIL-treated RA FLS has been
concluded also by Juengel et al. These authors
showed that the histone deacetylases inhibitor
trichostatin sensitizes RA FLS for TRAIL-
induced cell death and induced cell cycle arrest
by upregulating p21 levels.58

In summary, a pattern is emerging indicat-
ing that TRAIL acts as a pleiotropic cytokine on
tumor-like human RA FLS by inducing differ-
ent responses (Figure 1). This differs from
previous reports describing that TRAIL has a
protective role in the collagen-induced mouse
model of arthritis by blocking the proliferation
of synovial cells. This discrepancy could reflect
the different pathogenic mechanisms between
RA in the joints of patients and the respective
mouse model. Moreover, the organization of
TRAIL signaling between human and mouse
appears to be different, as only one mem-
brane-anchored TRAIL receptor and two solu-
ble decoy receptors have been identified in the
mouse. One recent report compared TRAIL and
TRAIL receptor expression in synovial tissues
of RA, osteoarthritis, and spondyloarthritis
patients by immunohistochemistry and found
the highest expression for TRAIL and its mem-
brane-bound receptors in tissues of RA
patients.59 Moreover, increased levels of the
apoptosis inhibitors survivin and xIAP were
found in synovial tissues of patients with
active RA when compared with those of inac-
tive RA. This finding could explain not only the
opposing effects of TRAIL on cultured RA FLS
but also suggests that resistance for TRAIL-
induced apoptosis correlates with disease
severity.
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