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Abstract 

This study aimed at investigating factors
associated with coliform mastitis (CM) in sows,
determined at herd level, by applying the deci-
sion-tree technique. Coliform mastitis repre-
sents an economically important disease in sows
after farrowing that also affects the health, wel-
fare and performance of the piglets. The deci-
sion-tree technique, a data mining method, may
be an effective tool for making large datasets
accessible and different sow herd information
comparable. It is based on the C4.5-algorithm,
which generates trees in a top-down recursive
strategy. The technique can be used to detect
weak points in farm management. Datasets of
two farms in Germany, consisting of individual
sow data, were analyzed and compared by deci-
sion-tree algorithms. Data were collected over
the period April 2007-August 2010 from 987 sows
of different parities (1-9) (499 sows with col-
iform mastitis and 488 healthy sows) and 596
sows (322 sows with coliform mastitis and 274
healthy sows), respectively. Depending on the
dataset, different graphical trees were built
showing relevant factors at the herd level, which
may lead to coliform mastitis. The application of
birth intervention and a higher number of
piglets born alive and stillborn ones were the
main risk factors identified by the decision-tree
technique to be associated with coliform masti-
tis. Herd specific risk factors for the disease
were illustrated what could prove beneficial in
disease and herd management. The application
of decision trees may be a possibility of
analysing critical points and decisions in man-
agement on an individual farm basis.

Introduction

Coliform mastitis (CM) is an important
infection in sows after farrowing followed by
serious economic losses due to lower produc-
tivities of the affected sows and higher

preweaning piglet mortalities.1 The diseased
animals suffer from fever and an inflammation
of the mammary glands that often leads to a
decreased milk secretion 24 to 48 h post par-
tum. The average prevalence in herds is about
13%, but a prevalence up to 60% of the animals
has also been reported.2-4 The term coliform
mastitis refers to a clinical mastitis due to col-
iform bacteria (Escherichia species (spp.),
Klebsiella spp., Enterobacter spp. and
Citrobacter spp.) which have been found to be
associated with the disease complex in many
studies.1,3,5,6 As a multifactorial disease, CM is
influenced by the strongly related main issues
of management, feeding and hygiene as well
as individual sow-related parameters.7 It is
generally assumed that optimal herd manage-
ment including the detection of weak points is
a key element in reducing the prevalence of
diseases in general and of CM as multifactori-
al infection in herds in particular.8 With the
aid of management information technology,
farmers are able to collect, process and inter-
pret data based at individual animal level.9
Data mining methods are special statistical
instruments which are applied to detect rela-
tionships between attributes in datasets. The
decision-tree technique, a data mining
method, has been proven as an effective tool to
make large farm datasets accessible and differ-
ent sow herds information comparable.10 The
aim of this study was to investigate the appli-
cation of the decision-tree technique to assess
potential risk factors associated with CM-
infected sows. Decision-trees which allow
deduction of association rules could support
the comparison and assessment of herd data
and thereby the establishment of optimal and
individual management strategies.

Materials and Methods

Datasets
The study was based on datasets from two

rearing herds in Germany with 1,200 (Farm A)
and 1,800 sows (Farm B) collected from April
2008 to August 2010 within the scope of a
microbiological study.11 The farms were of
high health status and tested free from porcine
reproductive and respiratory syndrome-virus,
rhinitis, Actinobacillus pleuropneumoniae

dysentery and enzootic pneumonia. 
The datasets comprised individual reproduc-

tion traits of the sows (Table 1) and a respec-
tive binary record of the occurrence of CM
(present or absent). All sows were examined
after farrowing and considered as mastitis
cases when their rectal temperature was above
the threshold of 39.5°C at 24 h post-partum12

and the mammary glands showed definite
signs of inflammation. Healthy half- or full-sib
sows from the same farrowing group served as
controls. The half-sib design was chosen due
to further studies on the genetic background of
CM via genotyping (Preissler et al., unpub-
lished data). Manual obstetric measures after
the beginning of birth were defined as the trait
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Table 1. Means (standard deviations) and frequencies (yes/no) of reproductive traits for
Farms A and B.

Variable (abbreviation) Farm A (n = 987) Farm B (n = 596)

Number of parities per sow (np) 4.0 (1.9) 3.2 (1.9)
Piglets born alive per litter (pba) 12.1 (3.0) 12.3 (3.1)
Piglets born dead per litter (pbd) 1.2 (1.6) 1.0 (1.5)
Birth intervention (biv) 212/ 775 143/ 453
Birth induction (bid) 409/ 578 356/ 240
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birth intervention. Birth induction was the
hormonal induction of birth after the 115. day
of gestation in order to get the birth process
started. The first dataset (Farm A) consisted of
a total of 987 observations (animals) – 499
observations from CM-positive sows and 488
observations from CM-negative sows. The sec-
ond dataset (Farm B) contained 596 observa-
tions whereas 322 observations distinguished
CM-positive sows and 274 observations CM-
negative sows. The mean number of parities
per sow was 4.0 for Dataset A and 3.2 for
Dataset B (Table 1). The average number of
piglets born alive was 12.1 and 12.3 for Dataset
A and B and the average number of stillborn
piglets was 1.2 and 1.0 for Dataset A and B,
respectively. The mean number of weaned
piglets was 10.6 for both datasets.

Decision-tree algorithm
The C4.5-algorithm of the open source soft-

ware WEKA was used to generate decision-
trees by employing the top-down and recur-
sive-splitting technique.13 Every decision-tree
consisted of a root node and internal nodes
representing the attributes, and branches that
characterized the attribute values. In this
study, the reproduction parameters and the
information of birth intervention (biv) and
birth induction (bid) served as attributes. The
leaves (leaf node of the decision-tree)
expressed the binary decision (presence or
absence of CM) and indicated the classifica-
tion of either positive (CM-positive sow) or
negative (CM-negative sow) examples.

The classification was performed by starting
from the root node until arriving at a leaf node.
The descending order of the attributes within
the decision-tree and the threshold values of
the branches were calculated by the algorithm
with the gain ratio criterion where the root of
the tree represented the attribute with the
highest information gain. In order to reduce
the chance of overfitting, the C4.5-algorithm
simplifies very highly and complex generated
trees by the error-based pruning method.14 The
C4.5-algorithm is described in detail by
Quinlan14 and Mitchell.15 The classification
accuracy of the algorithm was tested with the
stratified 10-fold cross-validation method
which analyses the number of correctly and
incorrectly classified instances (observa-
tions).16 The whole dataset was randomly
divided into ten subsets, nine parts being ded-
icated to train the algorithm and one for test-
ing it. The training set was used by the algo-
rithm for learning and building a decision tree
and the test set was used to estimate the clas-
sification evaluation parameters. Then the
algorithm ran ten times, each time with a dif-
ferent training and test set, and the results
were validated. The classification performance
assessment was evaluated with a two-dimen-
sional confusion matrix consisting of the num-

bers of true positive (TP), false negative (FN),
true negative (TN) and false positive (FP)
classified examples. Sows with CM described
the positive instances and healthy sows repre-
sented the negative instances in this study.
The classification accuracy of the C4.5-algo-
rithm was expressed by specific evaluation
parameters (Table 2). The overall classifica-
tion accuracy described the number of correct-
ly classified instances in total. The proportion
of correctly classified CM-positive sows in rela-
tion to all CM-positive sows was represented by
the sensitivity. In addition, the specificity was
defined by correctly classified CM-negative
sows in relation to all CM-negative sows. The

Kappa value reflected the degree of agreement
for classifying the sows in the CM-positive or
CM-negative classes. The error rate indicated
the falsely classified CM-positive sows in pro-
portion to all positively classified sows.

In this study, the minimum number of
instances per outcome class varied between
20, 50 and 100, i.e. a new branch was created
by the C4.5-algoithm only when it contained a
number of instances greater or equal to the
adjusted values of 20, 50 and 100. The results,
calculated with the different minimum num-
ber of instances per class, were named accord-
ing to the datasets A20, A50, A100 and B20, B50,
B100, respectively.
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Table 2. Evaluation parameters of the classification accuracy of the C4.5-algorithm.

Evaluation parameters Formula

Classification accuracy TP+TN/(TN+FP+FN+TP) x 100
Sensitivity TP/(TP+FN) x 100
Specificity TN/(TN+FP) x 100
Kappa value (TP+TN) - [((TP+FN) x (TP+FP) + (FP+TN) x (FN+TN))/N]/

N- [((TP+FN) x (TP+FP) + (FP+TN) x (FN+TN))/N] x 100
Error Rate FP/(FP+TP) x 100
TP, true positive; TN, true negative; FP, false positive; FN, false negative, N, total number of instances.

Table 3. Evaluation parameters for Farms A (n = 987) and B (n = 596) with varied adjust-
ed minimum number of instances per class

Dataseta Classification Sensitivity Specificity Error Kappa No. No.
accuracy (%) (%) rate statistic of of 

(%) (%) leaves nodes

A20 53.2 54,7 48,4 46.4 6,4 5 9
A50 54.2 55.9 47.5 45.4 8.4 4 7
A100 55.0 58.1 48.2 44.8 10.0 4 7
B20 61.2 65.8 44.2 36.3 21.7 8 15
B50 60.2 65.5 46.0 37.4 19.6 4 7
B100 56.4 64.0 52.6 41.1 11.5 3 5
a20, 50, 100 = at least 20, 50 or 100 instances per class.

Figure 1. Decision
tree showing the
detected parameters
and threshold values
associated with CM
of dataset A20
(n=987; minimum
number of 20
instances per class);
biv, birth interven-
tion; pbd, piglets
born dead; pda,
piglets born alive.
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Results

The evaluation parameters varied between
the two datasets and due to the specified num-
ber of instances per class (Table 3). The best
values were achieved for Dataset A when the
number of instances was set to the minimum
of 100 instances per class and for Dataset B
when the number of instances was set to the
minimum of 20 instances per class. The evalu-
ation parameters for B20 showed a better fit
compared to A100: The classification accuracy
(61.2%) and the sensitivity (65.8%) of B20

were higher than for A100 (55.0%; 58.1%) and
the error rate of B20 was 8.5% points lower. The
Kappa value (21.7%) of B20 reached higher val-
ues compared to A100 (10.0%). The specificity
of B20 (44.2%) was lower than for A100 (48.2%).

Graphical trees are presented for A20, A100,
B20 and B100 (Figures 1, 2, 3 and 4).

The decision-trees of both datasets showed
differences, although the available attributes
(parity number, piglets born alive, piglets born
dead, birth intervention, birth induction) were
the same for all trees 

The attribute birth induction did not appear
in any of the trees showing that the other
parameters are more important for the occur-
rence of coliform mastitis. The attribute parity
number was not chosen in the trees of Dataset
A. The trees of A20, A100 and B20 started with the
attribute birth intervention as the root node
which, therefore, was identified as the most
influencing attribute.

In Dataset A20, sows with no birth interven-
tion but piglets born dead greater than zero and
piglets born alive greater than 14 were CM-pos-
itive. In Dataset B20, sows with no birth inter-
vention, but a parity number less than or equal
to three, piglets born alive greater than twelve
and piglets born dead with at least one were
CM-positive. The right sub-tree demonstrated
that sows with birth intervention and piglets
born alive greater than nine were CM-positive.

The decision-trees of A100 and B100 were
pruned, which made the decision steps clearer
and more generic. Therefore, attributes with a
smaller information gain ratio were dropped by
the algorithm; important parameters endured.

The tree size of A100 was decreased by one
leaf and two nodes in comparison to A20. The
tree of B100 had five leaves and ten nodes less
than B20. 

In Dataset A100, sows were CM-positive
when birth intervention was applied, with
more than one piglet born dead or more than
14 piglets born alive. In Dataset B100, sows with
piglets born alive greater than ten and a parity
number less than or equal to three were CM-
positive. 
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Figure 2. Decision
tree showing the
detected parameters
and threshold values
associated with CM
of dataset A100
(n=987; minimum
number of 100
instances per class);
biv, birth interven-
tion; pbd, piglets
born dead; pda,
piglets born alive.

Figure 4. Decision
tree showing the
detected parameters
and threshold values
associated with CM
of dataset B100
(n=596; minimum
number of 100
instances per class);
biv, birth interven-
tion; np, parity num-
ber; pbd, piglets born
dead; pda, piglets
born alive.

Figure 3. Decision tree showing the detected parameters and threshold values associated
with CM of dataset B20 (n=596; minimum number of 20 instances per class); biv, birth
intervention; np, parity number; pbd, piglets born dead; pda, piglets born alive.
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Discussion

The main objective of the study was the
analysis of potential risk factors associated
with sows suffering from coliform mastitis,
determined on farm basis, by applying the
C4.5-algorithm of the decision-tree technique.
Environmental influences were standardised
through the recording of data on these two
farms with their high health standards.

According to the microbiological and genet-
ic study design, only clear cases of CM-positive
and selected cases of CM-negative sows were
used for the analysis. Therefore, it is not pos-
sible to make statements of the real prevalence
of CM on the farms where a large grey area of
diseased sows exist. 

The values of the evaluation parameters of
the C4.5-algorithm were not acceptable com-
pared to other studies. The sensitivity and
specificity were too low and the error rate was
too high. Kirchner et al. analysed culling
strategies in swine breeding data by using the
decision-tree technique and reached a classifi-
cation accuracy value of about 85%.10 The
specificity was around 97% and the error rate
on average 1%. Those datasets, however, con-
sisted of 14,897 and 21,818 observations, much
more than used in this study. Using more
observations for model building improves the
evaluation accuracy. With lower prevalence
and therewith more skewed data, it is easier to
reach higher accuracies.

The potential risk factors identified for CM
by the decision-tree induction have also been
described in other studies.4,17,18 A higher num-
ber of piglets born alive was associated with a
higher risk for the sows of becoming diseased.
This is in accordance with findings of Bostedt
et al.,17 in which gilts with 1.1 piglets more
than healthy sows suffered significantly more
often from feverish puerperal illness, and also
showed an increased stillbirth rate.
Concerning the number of stillborn piglets, our
study also supports these results. However,
other researchers did not find differences in
the number of stillborn piglets between dis-
eased and healthy sows.19,20

Literature about the effect of the parity
number on the occurrence of mastitis is con-
tradictory. While Baer and Bilkei21 found sows
of higher parity (>4) having an increased risk
of suffering mastitis, other studies have
described a greater mastitis risk for lower par-
ity sows (1. and 2. parity).4,17,18 We also found
a higher risk for primiparous sows, leading to
the interpretation that those sows were more
prone to disease. Explanations for this might
be their not fully developed immune sys-
tem,22,23 or that sows suffering mastitis in
their first parity might be culled. Physiological
hyperthermia is also often observed in postpar-
turient sows, especially primiparous ones,

leading to misinterpretations.7,24 The investi-
gated factor birth intervention may be helpful
in order to prevent CM in sows because it is
associated with a higher risk for mastitis and
can be regarded in the management. This fact
has also been reported by Bostedt et al.17

Manual intervention leading to a manipulation
of the birth process might have a negative
influence, especially if accompanied by insuffi-
cient hygiene.

In our study, the decision-tree technique
was shown to have the ability to illustrate con-
firmed influencing factors for CM. In addition,
the technique was able to weight those factors
on farm basis. Individual herd and manage-
ment differences were made clear by a differ-
ent order of the attributes and different thresh-
old values of the branches in the trees.
Decision-trees, therefore, may allow exposure
of individual weak points in the management
of and comparisons between farms. In the con-
text of multifactorial diseases, the utilisation
of such a technique is shown feasible when
certain conditions are fulfilled. For practical
use, graphical trees should be smaller with
clearly arranged decision steps to simplify
interpretations for farmers and consultants.
The minimum number of instances per branch
has to be adjusted to the total number of
instances, i.e. a small number of instances in
total requires a small minimum number of
instances per branch. The quality of the classi-
fication might be improved by optimising the
study design and including more information
about management and hygiene in the deci-
sion-tree algorithm. 
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