Advancing leukemia diagnostics: Role of Next Generation Sequencing (NGS) in acute myeloid leukemia

Abstract

AML diagnostics, initially based solely on morphological evaluation, now relies on multiple disciplines to reach its full potential. Only by integrating the results of cytomorphology, cytochemistry, immunophenotyping, cytogenetics and molecular genetics it is possible to fulfil WHO classification and ELN prognostication systems. Especially molecular genetics has gained a lot of interest over the last decade, mainly through the introduction of next generation sequencing (NGS). NGS application ranges from the investigation of single genes and panels to even whole exomes, transcriptomes and genomes. In routine AML diagnostics panels are the preferred NGS methodology. Here, we will review the power and limitations of NGS in the context of diagnosis, prognosis and precision medicine. Due to high dimensionality, NGS data interpretation is challenging but it also offers a unique investigatory chance and the opportunity to apply data mining techniques such as artificial intelligence. We will also reflect on how the incorporation of the improved knowledge base into routine diagnostics can pave the way for better treatment and more cure in AML.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition ed. International Agency for Research on Cancer Lyon 2017.

Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447. DOI: https://doi.org/10.1182/blood-2016-08-733196

Hutter S, Baer C, Walter W, Kern W, Haferlach C, Haferlach T. A Novel Machine Learning Based in silico Pathogenicity Predictor for Missense Variants in a Hematological Setting. Blood. 2019;134(Supplement_1):2090-2090. DOI: https://doi.org/10.1182/blood-2019-128488

Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer. 2011;2(2):95-107. DOI: https://doi.org/10.1177/1947601911408076

Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. New England Journal of Medicine. 2018;378(13):1189-1199. DOI: https://doi.org/10.1056/NEJMoa1716863

Morita K, Kantarjian HM, Wang F, et al. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology. 2018;36(18):1788-1797. DOI: https://doi.org/10.1200/JCO.2017.77.6757

Network TCGAR. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine. 2013;368(22):2059-2074. DOI: https://doi.org/10.1056/NEJMoa1301689

Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221. DOI: https://doi.org/10.1056/NEJMoa1516192

Thiede C. Impact of mutational analysis in acute myeloid leukemia. Hematology Education: the education programme for the annual congress of the European Hematology Association. 2012;6:8.

Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood. 2008;111(5):2527-2537. DOI: https://doi.org/10.1182/blood-2007-05-091215

Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481-3485. DOI: https://doi.org/10.1182/blood-2005-09-3724

Cornelissen JJ, Gratwohl A, Schlenk RF, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579-590. DOI: https://doi.org/10.1038/nrclinonc.2012.150

Tallman MS, Wang ES, Altman JK, et al. Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. 2019;17(6):721.

Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275-1291. DOI: https://doi.org/10.1182/blood-2017-09-801498

Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “prime time”? Blood. 2014;124(23):3345-3355. DOI: https://doi.org/10.1182/blood-2014-05-577593

Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482-1490. DOI: https://doi.org/10.1038/leu.2017.113

Klco JM, Miller CA, Griffith M, et al. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. JAMA. 2015;314(8):811-822. DOI: https://doi.org/10.1001/jama.2015.9643

Balagopal V, Hantel A, Kadri S, et al. Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing. PLoS One. 2019;14(10):e0224097-e0224097. DOI: https://doi.org/10.1371/journal.pone.0224097

Kim T, Moon JH, Ahn J-S, et al. Next-generation sequencing–based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood. 2018;132(15):1604-1613. DOI: https://doi.org/10.1182/blood-2018-04-848028

Press RD, Eickelberg G, Froman A, et al. Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse. American Journal of Hematology. 2019;94(8):902-912. DOI: https://doi.org/10.1002/ajh.25514

Thol F, Gabdoulline R, Liebich A, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132(16):1703-1713. DOI: https://doi.org/10.1182/blood-2018-02-829911

Yoest JM, Shirai CL, Duncavage EJ. Sequencing-Based Measurable Residual Disease Testing in Acute Myeloid Leukemia. Front Cell Dev Biol. 2020;8:249-249. DOI: https://doi.org/10.3389/fcell.2020.00249

Genovese G, Kähler AK, Handsaker RE, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. New England Journal of Medicine. 2014;371(26):2477-2487. DOI: https://doi.org/10.1056/NEJMoa1409405

Jaiswal S, Fontanillas P, Flannick J, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine. 2014;371(26):2488-2498. DOI: https://doi.org/10.1056/NEJMoa1408617

Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16. DOI: https://doi.org/10.1182/blood-2015-03-631747

Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine. 2014;20(12):1472-1478. DOI: https://doi.org/10.1038/nm.3733

Höllein A, Meggendorfer M, Dicker F, et al. NPM1 mutated AML can relapse with wild-type NPM1: persistent clonal hematopoiesis can drive relapse. Blood Advances. 2018;2(22):3118-3125. DOI: https://doi.org/10.1182/bloodadvances.2018023432

Burnett A, Russell N, Hills R, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. The Lancet Oncology. 2015;16. DOI: https://doi.org/10.1016/S1470-2045(15)00193-X

Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia. New England Journal of Medicine. 2013;369(2):111-121. DOI: https://doi.org/10.1056/NEJMoa1300874

Platzbecker U, Avvisati G, Cicconi L, et al. Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non–High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial. Journal of Clinical Oncology. 2017;35(6):605-612. DOI: https://doi.org/10.1200/JCO.2016.67.1982

Grimwade D, Jovanovic JV, Hills RK, et al. Prospective Minimal Residual Disease Monitoring to Predict Relapse of Acute Promyelocytic Leukemia and to Direct Pre-Emptive Arsenic Trioxide Therapy. Journal of Clinical Oncology. 2009;27(22):3650-3658. DOI: https://doi.org/10.1200/JCO.2008.20.1533

Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. New England Journal of Medicine. 2017;377(5):454-464. DOI: https://doi.org/10.1056/NEJMoa1614359

Krönke J, Schlenk RF, Jensen K-O, et al. Monitoring of Minimal Residual Disease in NPM1-Mutated Acute Myeloid Leukemia: A Study From the German-Austrian Acute Myeloid Leukemia Study Group. Journal of Clinical Oncology. 2011;29(19):2709-2716. DOI: https://doi.org/10.1200/JCO.2011.35.0371

Shayegi N, Kramer M, Bornhäuser M, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013;122(1):83-92. DOI: https://doi.org/10.1182/blood-2012-10-461749

Röllig C, Beelen DW, Braess J, et al. Onkopedia Leitlinien; Akute Myeloische Leukämie (AML). 2019; https://www.onkopedia.com/de/onkopedia/guidelines/akute-myeloische-leukaemie-aml/@@guideline/html/index.html#litID0EYSBG. Accessed 2020/09/07.

Heuser M, Mina A, Stein EM, Altman JK. How Precision Medicine Is Changing Acute Myeloid Leukemia Therapy. American Society of Clinical Oncology Educational Book. 2019(39):411-420. DOI: https://doi.org/10.1200/EDBK_238687

Burchert A, Bug G, Finke J, et al. Sorafenib As Maintenance Therapy Post Allogeneic Stem Cell Transplantation for FLT3-ITD Positive AML: Results from the Randomized, Double-Blind, Placebo-Controlled Multicentre Sormain Trial. Blood. 2018;132(Supplement 1):661-661. DOI: https://doi.org/10.1182/blood-2018-99-112614

Burchert A, Bug G, Fritz LV, et al. Sorafenib Maintenance After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia With FLT3–Internal Tandem Duplication Mutation (SORMAIN). Journal of Clinical Oncology. 2020;38(26):2993-3002. DOI: https://doi.org/10.1200/JCO.19.03345

Published
2020-09-21
Keywords:
Acute myeloid leukemia, multidisciplinary diagnostics, next generation sequencing, precision medicine
Statistics
  • Abstract views: 469

  • PDF: 225
  • HTML: 0
How to Cite
Haferlach, T. (2020). Advancing leukemia diagnostics: Role of Next Generation Sequencing (NGS) in acute myeloid leukemia. Hematology Reports, 12(s1). https://doi.org/10.4081/hr.2020.8957