Treatment for unicameral bone cysts in long bones: an evidence based review

Sandra Donaldson,1 Josie Chundamala,2 Suzanne Yandow,4 James G. Wright1
1Orthopaedic Surgery, The Hospital for Sick Children, Toronto, Canada; 2Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada; 3Orthopaedic Surgery, Central Texas Pediatric Orthopedics, Austin, Texas, USA

Abstract

The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.

Introduction

Simple, or unicameral, bone cysts are a benign lesion in growing children. While the two terms are used interchangeably some would argue that bone cysts are not “simple”, whereas the cysts are not always unicameral. Cysts are more common in males (70%) and typically present in the proximal humerus (70%) or femur (25%). While exact figures are unknown, it is estimated that approximately 75% of children present with pathological fracture.1 Cysts heal in less than 15% of children following fracture.2 Although unicameral bone cysts are believed to resolve with skeletal maturity, without treatment these children are at risk for pain, or recurrent fracture leading to activity restriction for many years. Unicameral bone cysts may also lead to growth disturbance. Growth arrest, a relatively uncommon complication, may occur through many mechanisms. The disruptive, hydrodynamic assault of cyst fluid on the physis may in itself result in growth disturbances.3 Other rare causes for growth arrest include multiple fractures through the cyst that damage the physis, direct extension of the cyst through the physis, or as a result of treatment of cysts adjacent to the physeal plate.4,5 Regardless of the cause, growth retardation in the affected limb may lead to angular deformity and/or limb length discrepancy.6

Recurrent pathological fractures in children with unicameral bone cysts require immobilization, and/or internal fixation, and restriction of activities. Recurrent fractures, particularly in the lower limb, may also cause limb length discrepancy and deformity. In addition, children are often afraid of their usual play activities or are restricted from all sporting activities by their parents or physician because of the concern of fracture(s). Finally, some children with unhealed cysts complain of pain.7 Although the origin of this pain is unclear, the pain seems to resolve with the healing of the cyst.4 Thus despite the benign nature of these lesions, unicameral bone cyst can have significant detrimental effects on otherwise normal children and their families.

Many theories have been proposed to explain the pathogenesis of unicameral bone cysts. An early theory was that injury to the growth plate leads to abnormal endochondral bone formation.8 Interest has also been drawn to the cyst lining and the presence of bone resorptive factors in the cyst fluid, including interleukin 1-B and prostaglandin E29 and oxygen free radicals and lysosomes.1212 Another theory suggests that vascular obstruction causes cyst fluid to accumulate under pressure and expand at the expense of the normal bone.1012 However, the uncertainty of the etiology has led to a wide variety of treatments.

Treatement strategies for unicameral bone cysts include injection, mechanical disruption of the cyst lining and/or wall, structural support, decompression, or mixed methods. Injections can include steroids,11 bone marrow,12 demineralized bone matrix,13 calcium sulfate pellets,14 and fibrin sealant.15 Mechanical disruption of the cyst lining or wall is done by curettage. Structural support can be done with flexible intramedullary nailing.16 Decompression can be done with multiple drill holes,17 cannulated screws,19 and different types of nails.20 Many mixed methods approach the cyst on multiple levels such as percutaneous removal of cyst lining, curettage to break up septations, intramedullary decompression, and injection of calcium sulfate pellets.21 To date, few comparative studies have been conducted (Table 1). The purpose of this study was to perform an evidence based review of treatment of unicameral bone cysts.

Materials and Methods

A search of MEDLINE (1966 to 2009) was conducted using the following search string: Bone cysts/ and (unicameral or multi-cameral or simple). The search was limited to English language, humans and children aged 0 to 18 years. The studies had the following inclusion criteria: sample size greater than one; randomized controlled trial or comparative study; cysts located in long bones; and all forms of treatment including observation or fracture immobilization. Studies were excluded if the cysts were located in areas other than long bones, i.e. calcaneus or pelvis. Studies with mixed populations of cyst location were included, but studies focusing exclusively on calcaneal cysts were excluded. Studies of mixed populations

Correspondence: Sandra Donaldson, Orthopaedic Surgery, The Hospital for Sick Children, S107-555 University Ave, Toronto, Ontario, M5G 1X8, Canada. E-mail: sandra.donaldson@sickkids.ca

Key words: unicameral bone cyst, pediatrics, treatment, levels of evidence.

Contributions: SD and JC, analysis and interpretation of data, drafting the article, final approval of the version to be published; SY, analysis and interpretation of data, revising article for important intellectual content, final approval of the version to be published; IOW, conception and design; analysis and interpretation of data, revising article for important intellectual content, final approval of the version to be published and funding.

Conflict of interest: the authors report no conflicts of interest.

Received for publication: 12 March 2010. Revision received: 18 March 2010. Accepted for publication: 19 March 2010.

This work is licensed under a Creative Commons Attribution 3.0 License (by-nc 3.0).

Table 1. Summary of Levels of Evidence I - III [N=1340].

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Level of evidence</th>
<th>Study design</th>
<th>Mean Age of population years:</th>
<th>Follow-Up years:</th>
<th>Definition of healed</th>
<th>Intervention</th>
<th>Complications</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright et al.</td>
<td>2007</td>
<td>I</td>
<td>RCT</td>
<td>9.5</td>
<td>2.2 to 17.1</td>
<td>Modified Neer / Cole classification</td>
<td>Steroid injection [n=30] Autologous bone marrow injection [n=39]</td>
<td>Fractures: 11 Complications: 0 Fractures: 9 Complications: 2 superficial infections</td>
<td>Steroid superior to bone marrow (P=0.01)</td>
</tr>
<tr>
<td>Brecelj et al.</td>
<td>2007</td>
<td>II</td>
<td>Prospective comparative</td>
<td>9.8</td>
<td>2.7 to 16</td>
<td>Chang classification</td>
<td>Steroid injection [n=31] Curettage + bone grafting [n=8] Cannulated screw [n=28]</td>
<td>Fractures: none reported Complications: none reported Fractures: none reported Complications: none reported Fractures: complications: 3 broken screws (left in place)</td>
<td>Cannulated screw superior to steroid (P=0.001)</td>
</tr>
<tr>
<td>Sung et al.</td>
<td>2008</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>11.2</td>
<td>0.08 to 27</td>
<td>Outcome defined as: Treatment failure (defined clinically as subsequent pathologic fracture or need for reoperation to prevent pathologic fracture)</td>
<td>Steroid injection [n=94] Curettage and bone grafting [n=39] SDB: Combination injection of steroid, demineralized bone matrix, and bone marrow aspirate [n=34]</td>
<td>Fractures: 17 Complications: 5 deformity/ growth disturbance Fractures: 1 Complications: 3 deformity/ growth disturbance Fractures: 4 Complications: 1 deformity/growth disturbance</td>
<td>SDB superior to steroid injection (P<0.001) Curettage and bone grafting superior to steroid (P=0.01) No difference between curettage and SDB (P=0.27)</td>
</tr>
<tr>
<td>Cho et al.</td>
<td>2007</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>11.2</td>
<td>2 to 18</td>
<td>Modified Neer classification</td>
<td>Steroid injection [n=30] Autologous bone marrow injection [n=38]</td>
<td>Fractures: 0 Complications: none reported Fractures: 3 Complications: none reported</td>
<td>No difference between treatment groups (P=0.05)</td>
</tr>
<tr>
<td>Chang et al.</td>
<td>2002</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>9.1</td>
<td>Not provided</td>
<td>Modified Neer classification</td>
<td>Steroid injection [n=65] Autologous bone marrow injection [n=16]</td>
<td>Fractures: 26 Complications: none reported Fractures: none reported Complications: none reported</td>
<td>No difference between groups (P>0.05)</td>
</tr>
<tr>
<td>Tsuchiya et al.</td>
<td>2002</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>15.2</td>
<td>8 to 22</td>
<td>Not defined</td>
<td>Curettage, multiple drilling + titanium cannulated screws [n=15] Curettage, multiple drilling + cannulated</td>
<td>Fractures: 2 Complications: none reported Fractures: 0 Complications: none reported hydronapatite pin [n=11]</td>
<td>No difference between treatment groups (P=0.12)</td>
</tr>
</tbody>
</table>
Table 1. Continued from previous page.

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Level of evidence</th>
<th>Study design</th>
<th>Age of population years</th>
<th>Follow-Up years</th>
<th>Definition of healed</th>
<th>Intervention</th>
<th>Complications</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bensahel et al. 1998a</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 7 Range: 2 to 14</td>
<td>Mean: 9 Range: 3 to 15</td>
<td>Not defined</td>
<td>Steroid injection [n=55] Fractures: 0 Complications: 0</td>
<td>Resection and myoplasty [n=50] Fractures: 0 Complications: 0</td>
<td>Resection and myoplasty superior to steroid injection (P=0.02)</td>
</tr>
<tr>
<td>Gennari et al. 1995b</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 7 Range: 3 to 13</td>
<td>Mean: 6 Range: Not provided</td>
<td>Not defined</td>
<td>Steroid injection [n=3] Fractures: 0 Complications: 0</td>
<td>Curettage + bone grafting + osteosynthesis [n=10] Fractures: 2 Complications: 2 limb shortenings</td>
<td>No difference between treatment groups (P=0.08)</td>
</tr>
<tr>
<td>Mykle et al. 1992b</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 15 Range: Not provided</td>
<td>Mean: 8.5 Range: Not provided</td>
<td>Neer/Campanacci Classification 4 grade scale, healed defined as 2 or 3: 1) Incomplete healing new bone formation fills the area previously occupied by the cyst. Small sites of osteolysis remain visible in the boundaries of the cyst; 2) Complete healing the space occupied by the SBC is completely filled by new bone or by hydroxyapatite.</td>
<td>Steroid injection [n=20] Fractures: 0 Complications: 1 superficial infection</td>
<td>Curettage +/- bone grafting [n=21] Fractures: 0 Complications: 3 superficial infection</td>
<td>Curettage + steroid injection [n=4] Fractures: 0 Complications: 0</td>
</tr>
<tr>
<td>Farber et al. 1990b</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 8.1 Range: Not provided</td>
<td>Mean: 6.7 Range: Not provided</td>
<td>Not defined</td>
<td>Steroid injection [n=17] Fractures: none reported Complications: 0</td>
<td>Curettage + bone grafting [n=19] Fractures: none reported Complications: 0</td>
<td>No difference between treatment groups (P=0.27)</td>
</tr>
<tr>
<td>Botill et al. 1989b</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 8.9 Range: 0.75 to 30</td>
<td>Mean: 5.6 Range: Not provided</td>
<td>Oppenheimer and Gallocco Modification 4 grade scale, healing defined as 1 or 2: 1) Resolution: 70-100% obliteration and renewed cortical thickening on serial X-ray; 2) Incomplete resolution: 50-70% obliteration with renewed cortical thickening.</td>
<td>Steroid injection [n=12] Fractures: 3 Complications: 0</td>
<td>Surgical treatment (multiple) [n=15] Fractures: 1 Complications: 1 limb deformity, 1 infection, 1 median nerve palsy, and 1 keloid.</td>
<td>Non-surgical treatment (orthopedic) [n=5] Fractures: 0 Complications: 0</td>
</tr>
<tr>
<td>Pentimalli et al. 1987c</td>
<td>III</td>
<td>Retrospective comparative</td>
<td>Mean: 9.1 Range: 4 to 15</td>
<td>Mean: 7 Range: (3 to 2)</td>
<td>3 grade scale: healing not defined further 1) Good: cyst had completely disappeared, the thickness of cortical bone was normal, and no irregularity was present in the medullary canal; 2) Fair: cyst had disappeared, but the cortical bone was thinner than normal and some irregularities were evident inside the medullary canal; 3) Poor: cyst was still present, although reduced in volume, and/or there was shortening of the affected bone by more than 2 cm, with the bone slightly deformed at the site of the cyst.</td>
<td>Steroid injection [n=20] Fractures: none reported Complications: none reported</td>
<td>Curettage + bone grafting [n=20] Fractures: none reported Complications: none reported</td>
<td>No difference between treatment groups (P=0.29)</td>
</tr>
</tbody>
</table>

Continued next page
including children and adults were included as long as the mean age of patients ranged between 0 and 18 years.

The following information was collected from each of the studies: year of publication, study design, age of patients, duration of follow-up, definition/grading system for cyst healing, treatment(s), sample size, and outcome. The studies were classified according to levels of evidence as described in the Journal of Bone and Joint Surgery, where therapeutic studies are classified into five levels based on study design. This review includes levels I-III only. Level I evidence consists of high quality randomized controlled trials and systematic reviews of level I studies with consistent results. Level II evidence includes lesser quality randomized controlled trials, prospective comparative studies, and systematic reviews of level II studies or level I studies with inconsistent results. Level III evidence consists of case-control studies, retrospective comparative studies, and systematic review of level III studies.

P values were obtained in two ways. First, if statistical data (absolute or relative) on cyst healing was available, then a P value was used to calculate a P value. Cyst “healing” was defined as “complete healing or partial healing (with small residual cyst)” when a cyst graded scale was specified. When cyst healing index was not specified, the author’s description of “healed” was used.

Results

The literature search yielded 263 articles (Figure 1). Of these, 247 were excluded for the following reasons: 99 were levels IV or V (case series, editorial, or review article); 53 were focused on non-long bones (calcaneal, mandible, pelvis); 36 were not therapeutic (diagnostic or prognostic); 28 were differential diagnosis (benign lesions or malignant tumors); 18 focused on treatment of complications (pathological fractures, growth arrest, limb length discrepancy); and 13 had an English abstract but the paper was written in another language. This review included the results of 16 identified studies as listed in Table 1. Years of publication span 1966 to 2009 and include a total number of 1,340 patients and 13 different types of treatment. Table 2 provides ranges of treatment success. There is one level I study, one level II study and the remaining 14 studies are level III. Studies are presented chronologically by level, starting with the most current publications.

Level I studies

In the one level I study, Wright et al. reported a randomized clinical trial comparing intralesional bone marrow [n=39] and methylprednisolone [n=38] injections. This trial involved 24 centers and 47 surgeons across North America and India with follow-up of 2.2 years. Results of the trial indicated that steroid injection (42% healed) was significantly better than bone marrow (23% healed) for healing...
bone cysts (P=0.01). The authors also found that both subsequent fracture (P=0.04) and increased cyst area (P=0.03) were significantly associated with non-healing of the cyst. Complications included 9 subsequent fractures and 2 infections in the bone marrow injection group, and 11 fractures and no infections in the steroid group (P=0.12).

Level II studies

In the one level II study, Brecelj et al.19 compared steroid injection (n=33), curettage and bone grafting (n=8), and a specially designed cannulated screw (n=28) in a prospective comparative study with a follow-up of 5.8 years. All three groups required multiple courses of treatment. The cannulated screw group, after two attempts, demonstrated the highest rate of healing (P=0.001) at 65% compared to 50% and 19% for open curettage and methylprednisolone injections, respectively. Complications included three screws that broke during removal and were left in place. None of the following factors were related to treatment success: sex, cyst size ratio, cyst activity, age at first treatment, pathological fractures or number of humeral cysts (with exception of second steroid injection, there were a higher number of humeral cysts in the failed treatment group [P=0.017]).

Level III studies

The retrospective study by Sung et al.20 compared steroid (n=94), curettage and bone grafting (n=39), and a combination injection (SDB) of steroid, demineralized bone matrix, and bone marrow aspirate. Results indicate that both curettage and bone grafting and the combination injection (SDB) were superior to steroid, P=0.01 and P<0.001 respectively. However, there was no difference between curettage and bone grafting and the combination injection (SDB) (P=0.23). Subsequent pathological fractures were reported in 18% (17/94) of patients treated with steroid injection, 2.6% (1/39) of patients treated with curettage, and 12% (4/34) of patients treated with the combination injection SDB. Other complications, such as deformity or growth disturbance, were reported in 5.3% (5/94) of patients treated with steroid injection, 7.7% (3/39) of patients treated with curettage and 2.9% (1/34) of patients treated with SDB.

A retrospective study by Cho et al.21 compared bone marrow (n=28) and steroid (n=30) injections with a follow-up of 4.7 years. The overall success rates were 86.7% after 2.5 injections in the steroid group and 92.0% after 1.8 injections in the bone marrow group (P>0.05). Despite this lack of difference between treatment groups in the final outcome, they found that the steroid group had a higher recurrence rate after one injection (P<0.05) and needed more injections to complete healing (P<0.05). Cho et al. indicated there was no association between healing after the initial procedure and age, gender, location of the cyst, cyst activity or previous pathological fracture in either the bone marrow or steroid group (P>0.05). Complications included three fractures after bone marrow injections in patients who did not follow postoperative immobilization instructions.

A retrospective study by Chuo et al.22 compared cannulated screws (n=7), curettage and bone grafting with ORIF (n=4), and observation (n=6) with a follow-up of 5.7 years. Although the authors concluded cannulated screws were preferred, the difference in rates of healing between treatment groups (P=0.42) was not statistically different. There was one complication of a malunion in the observation group.

A retrospective study by Chang et al.23 compared steroid (n=65) and bone marrow injections (n=14) with a follow-up of 3.7 years. Although there was no statistical difference between treatment groups (P>0.05), the rate of healing after 2 injections in the bone marrow group and 1.5 injections in the steroid group was 57% and 56%, respectively. No complications were reported in either group. Cysts that healed after one injection (of either bone marrow or steroid) compared with those that didn’t heal, had a significant difference in the

<table>
<thead>
<tr>
<th>Treatment: N=1340 [n]</th>
<th>Range of success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroid injection [563]</td>
<td>15-100132,122,133,35</td>
</tr>
<tr>
<td>Bone marrow injection [81]</td>
<td>23-92134,21</td>
</tr>
<tr>
<td>Curettage and bone grafting [447]</td>
<td>36-85 [27, 92, 30, 33]</td>
</tr>
<tr>
<td>Cannulated screw [35]</td>
<td>46-100135</td>
</tr>
<tr>
<td>Steroid injection + DBM + bone marrow aspirate [34]</td>
<td>29-521</td>
</tr>
<tr>
<td>Curettage + bone grafting + ORIF [4]</td>
<td>7521</td>
</tr>
<tr>
<td>Curettage + multiple drilling + titanium cannulated screw [15]</td>
<td>8025</td>
</tr>
<tr>
<td>Curettage + multiple drilling + hydroxyapatite pin [11]</td>
<td>10023</td>
</tr>
<tr>
<td>Resection + myoplasty [50]</td>
<td>7225</td>
</tr>
<tr>
<td>Curettage + bone grafting + osteosynthesis [10]</td>
<td>10022</td>
</tr>
<tr>
<td>Cyst rupture + osteosynthesis [5]</td>
<td>6025</td>
</tr>
<tr>
<td>Orthopedic treatment [70]</td>
<td>4-10027,28</td>
</tr>
<tr>
<td>Mixed surgical treatment [15]</td>
<td>8728</td>
</tr>
</tbody>
</table>

Figure 1. Literature search and review results.
In 2002, Tsuchiya et al.29 retrospectively compared curettage, multiple drilling and titanium cannulated screws (n=15) and curettage, multiple drilling and cannulated hydroxyapatite pins (n=11) with a follow-up of 6.8 years. The authors recommended the hydroxyapatite pins because the pins didn’t require removal. Although all patients receiving cannulated titanium screws healed, there was no difference in healing between treatment groups (P=0.12). There were two complications in the cannulated screw group (one fracture and one fissure fracture) and no complications in the hydroxyapatite pin group.

Bensahel et al.28 retrospectively compared resection and myoplasty using a local muscle flap (n=50) and steroid injections (n=55) with a follow-up of nine years. Resection and myoplasty compared with steroids had a higher rate of healing of 71% and 50%, respectively (P=0.02). There were no complications reported in either group.

Gennari et al.26 retrospectively compared steroid injection (n=3), curettage and bone grafting and osteosynthesis (n=10), rupture of cyst without osteosynthesis (n=5), and observation (or “orthopedic treatment”) (n=2) in cysts in the upper third of the femur with a follow-up of six years. There was no difference in rates of healing between treatment groups (P=0.08). There were two limb shortening (<2 cm) in the curettage group, three shortening (≥2 cm) in the cyst rupture group, and one lengthening (>2 cm) in the observation group.

Mylle et al.27 retrospectively compared steroid injection (n=20), curettage and bone grafting (n=21), curettage and steroid injection (n=6), and no treatment (n=12) with a follow-up of 8.5 years. Steroid injection was found to be superior to curettage and bone grafting (P=0.03) with 90% and 43% healing, respectively. Complications included one superficial infection in the steroid group, three in the curettage and bone grafting group, and one in the curettage and steroid injection group. There were ten subsequent fractures and one growth disturbance in the ‘no treatment’ group.

Farber et al.30 retrospectively compared steroid injections (n=17) and curettage and bone grafting (n=19) with a follow-up of 6.7 years. Although methylprednisolone has higher rates of healing of 70% compared with 53% in the curettage group, the difference was not statistically different (P=0.27). No complications were reported.

Bovill et al.31 retrospectively compared steroid injections (n=12), multiple surgical techniques (n=15), and observation (n=5) with a follow-up of 5.6 years. No difference was found between rates of healing in the treatment groups (P=0.11). There were eight complications in the surgical group: three leg length deformities, one infection, one transient median nerve palsy, one subsequent fracture, and one keloid. There were three subsequent fractures in the steroid group.

Pentimalli et al.32 retrospectively compared steroid injections (n=20) and curettage and bone grafting (n=20) with a follow-up of seven years. Although the authors recommend steroid injections because the radiographic results were better with a lower recurrence rate, the rates of healing for steroid injections (95%) and curettage and bone grafting (85%) were not statistically different (P=0.29). No complications were reported.

Campanacci et al.33 retrospectively compared steroid injections (n=141) and curettage and bone grafting (n=178) with a follow-up of one to 35 years (mean not provided). Although the authors indicated the end results were comparable in both groups, the steroid group had higher rates of healing than curettage on bone grafting (P<0.0001), 91% and 68%, respectively. The steroid group had 28 limb length discrepancies, 13 subsequent fractures, and one avascular necrosis. The curettage and bone grafting group had 25 limb length discrepancies.

Oppenheim et al.34 retrospectively compared steroid injections (n=20) and curettage or excision with or without grafting (n=37) with a follow-up of 3.8 years. There was no difference in rates of healing between steroid injection (40%) and the curettage group (57%) (P=0.22), although the authors recommended the steroid injection due to its simplicity and reduced morbidity. Complications included one mild steroid flush (2.4 g dose of Depo Medrol was inadvertently given) and one shortening of the humerus in the steroid group. There were 6 complications in the curettage group which included coxa vara, wound infection, physical arrest, and extremity shortening.

Neer et al.35 retrospectively compared curettage and bone grafting (n=125) with immobilization after fracture (n=45) with a minimum 2-year follow-up. Curettage and bone grafting had higher rates of healing than the non-operative treatment (P<0.001), 77% and 4%, respectively. Complications for the non-operative group included subsequent fractures in 36 patients and 4 growth disturbances and deformity. Complications for the curettage group were 3 subsequent fractures, one wound infection, and 4 premature epiphyseal closures which led to shortening of 1-3 cms.

Discussion

Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting;19-21,29 one study indicated that cannulated screws were superior to steroid injections;27,30,32 one study indicated resection and myoplasty was superior to steroid injection;28 one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting was superior to non-operative immobilization.2 In interpreting the literature the different treatments have different pros and cons. The treatments range from simple injections to open treatments to internal fixation. The invasiveness must be contrasted with the need for repeat treatment such as steroids which may require multiple injections. These factors must all be balanced against risk of fracture and probability of success.

The literature has several shortcomings. First, the outcome for almost all studies (15/16) was based on radiographic healing rather than patient based outcomes such as fracture, pain or function. Second, there was variability in the type of radiographic healing scale or index used. Eight of the sixteen studies used a modification of the Neer criteria, four did not define the scale or index used, and four used their own original criteria. Third, there was a wide variation in treatment protocols. For example, although all steroid injection protocols used methylprednisolone acetate, the dosage ranged from 40 to 250 mg and number of injections ranged from one to 6. Bone marrow injection protocols also varied including amount withdrawn from each harvest site (2-8 ml), amount injected into cyst (9-50 ml), and number of injections (1-4). Fourth, there was different duration of follow-up with the mean ranging from 2.2 to 9.0 years and overall range from one to 35 years. Finally, the studies had a variety of sample sizes, ranging from very small (n=2) to 178.

As unicameral bone cysts and corresponding pathological fractures present in different locations, variations in treatment may result. Pathological fractures in the lower extremities, particularly in the proximal femur, have greater potential for complications. Fracture(s) in this area may result in physical activities, particularly in the proximal femur, have greater potential for complications. Fracture(s) in this area may result in physical activities.
Review

treatment of the cyst through continuous decompression. Advantages of this treatment include stability to the bone and early mobilization of the patient. Complications include nail revisions due to bone growth and difficulty of anchoring nails due to lack of bone in the femoral neck.

There are few reports in the literature on prophylactic internal fixation of bone cysts at risk for pathological fracture in the proximal femur. These reports are case series of the majority of patients presenting with pathological fractures. The authors acknowledge the numbers for cysts treated prophylactically with internal fixation are small but indicate they see no difference in rates of cyst healing when compared to cysts treated with concurrent pathological fracture.

Treatment for unicameral bone cysts has evolved over the years. Curettage and bone grafting was used for many years. Unfortunately, this aggressive approach had high recurrence rates of 40-50% with the associated scar and morbidity of surgery. A less intrusive technique, intraskeletal steroid injections, became a common treatment modality for many years with rates of healing ranging from 41-90%. In 1996, Lokiec et al. published a preliminary study on bone marrow injections reporting that all ten cysts demonstrated radiographic healing. Subsequent reported rates of healing using bone marrow injections ranged from 42-100%. Based on early promising results, many surgeons shifted from steroid injection to bone marrow. Based on the levels of evidence analysis, this may have been a premature shift in clinical practice.

In conclusion, based on one level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections to other treatments.

References