Ultrapathological evaluation of the anticancer effect of blackseed (Nigella sativa) and garlic (Allium sativum) in mice

Main Article Content

Wael Gamal Nouh *
(*) Corresponding Author:
Wael Gamal Nouh | wael131269@yahoo.com


In this experimental work, 120 virgin female mice (body weight 40±10 gm) were divided into 6 equal groups. Mice in Group 1 served as a control. Mice in Groups 2 and 3 were fed on a basal diet provided with 100 mg/kg b.wt from each of blackseed (Nigella sativa) and garlic (Allium sativum), respectively, for one month. Mice in Group 4 were inoculated subcutanously (S/C) with Ehrlich tumor cells after one month from the start of the experiment. Mice in Groups 5 and 6 were treated similarly to those in Groups 3 and 4, respectively, for one month and then immediately inoculated S/C with Ehrlich tumor cells (ETC, 0.1 mL/mouse). Blood samples were taken from mice of Groups 1, 2 and 3 at one month of experiment and tissue specimens were collected from mice in all groups two weeks after inoculation of Ehrlich tumor cells. Histopathologically, Groups 2 and 3 showed proliferation of mononuclear phagocytic system and mild degeneration of internal organs. In Group 4, histopathology revealed neoplastic mass with signs of malignancy, ultrastructurely exhibited pleomorphism, degenerated organelles with activated euo- and heterochromatin and cavitations of the cytoplasm. Groups 5 and 6 revealed much smaller neoplastic growth with necrosis and hemorrhage. The necrotic neoplastic cells replaced by empty cavities with congested blood vessels, the others showed pyknotic or karryolytic nuclei. In Groups 5 and 6, the electron microsopic appearance of the neoplastic growth exhibited degenerated and swollen cells with multiple cavitations. Most of the cytoplasmic organelles were degenerated with activation of lysozymes. It could be concluded that, both garlic and black seed minimize the histopathological and electron microscopic alterations of ETC in mice.

Downloads month by month


Download data is not yet available.

Article Details