Biosynthesis of Triacylglycerols (TAGs) in plants and algae


Submitted: 28 March 2011
Accepted: 11 October 2011
Published: 22 December 2011
Abstract Views: 12623
PDF: 2301
HTML: 948
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Triacylglycerols (TAGs), which consist of three fatty acids bound to a glycerol backbone, are major storage lipids that accumulate in developing seeds, flower petals, pollen grains, and fruits of innumerous plant species. These storage lipids are of great nutritional and nutraceutical value and, thus, are a common source of edible oils for human consumption and industrial purposes. Two metabolic pathways for the production of TAGs have been clarified: an acyl¬ CoA-dependent pathway and an acyl-CoA-independent pathway. Lipid metabolism, specially the pathways to fatty acids and TAG biosynthesis, is relatively well understood in plants, but poorly known in algae. It is generally accepted that the basic pathways of fatty acid and TAG biosynthesis in algae are analogous to those of higher plants. However, unlike higher plants where individual classes of lipids may be synthesized and localized in a specific cell, tissue or organ, the complete pathway, from carbon dioxide fixation to TAG synthesis and sequestration, takes place within a single algal cell. Another distinguishing feature of some algae is the large amounts of very long-chain polyunsaturated fatty acids (VLC- PUFAs) as major fatty acid components. Nowadays, the focus of attention in biotechnology is the isolation of novel fatty acid metabolizing genes, especially elongases and desaturases that are responsible for PUFAs synthesis, from different species of algae, and its transfer to plants. The aim is to boost the seed oil content and to generate desirable fatty acids in oilseed crops through genetic engineering approaches. This paper presents the current knowledge of the neutral storage lipids in plants and algae from fatty acid biosynthesis to TAG accumulation.

Supporting Agencies

CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPERGS (Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul), FINEP

Cagliari, A., Margis, R., dos Santos Maraschin, F., Turchetto-Zolet, A. C., Loss, G., & Margis-Pinheiro, M. (2011). Biosynthesis of Triacylglycerols (TAGs) in plants and algae. International Journal of Plant Biology, 2(1), e10. https://doi.org/10.4081/pb.2011.e10

Downloads

Download data is not yet available.

Citations